PROPheT – Ontology Population and Semantic Enrichment from Linked Data Sources

  • Marina Riga
  • Panagiotis Mitzias
  • Efstratios KontopoulosEmail author
  • Ioannis Kompatsiaris
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 822)


Ontologies are a rapidly emerging paradigm for knowledge representation, with a growing number of applications in various domains. However, populating ontologies with massive volumes of data is an extremely challenging task. The field of ontology population offers a wide array of approaches for populating ontologies in an automated or semi-automated way. Nevertheless, most of the related tools typically analyse natural language text, while sources of more structured information like Linked Open Data would arguably be more appropriate. The paper presents PROPheT, a novel software tool for ontology population and enrichment. PROPheT can populate a local ontology model with instances retrieved from diverse Linked Data sources served by SPARQL endpoints. To the best of our knowledge, no existing tool can offer PROPheT’s diverse extent of functionality.


Ontologies Ontology population Semantic enrichment Linked Data DBpedia 



This research received funding by the European Commission Seventh Framework Programme under Grant Agreement Number FP7-601138 PERICLES.


  1. 1.
    Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11(02), 93–136 (1996). Scholar
  2. 2.
    Gene Ontology Consortium: The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 32(suppl 1), D258–D261 (2004). Scholar
  3. 3.
    Hepp, M.: GoodRelations: an ontology for describing products and services offers on the web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 329–346. Springer, Heidelberg (2008). Scholar
  4. 4.
    Buckingham Shum, S., Motta, E., Domingue, J.: ScholOnto: an ontology-based digital library server for research documents and discourse. Int. J. Digit. Libr. 3(3), 237–248 (2000). Scholar
  5. 5.
    Buitelaar, P., Cimiano, P.: Ontology learning and population: bridging the gap between text and knowledge, vol. 167. Ios Press, Amsterdam (2008)zbMATHGoogle Scholar
  6. 6.
    Maedche, A., Staab, S.: Ontology learning from the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001). Scholar
  7. 7.
    Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology population and enrichment: state of the art. In: Paliouras, G., Spyropoulos, Constantine D., Tsatsaronis, G. (eds.) Knowledge-Driven Multimedia Information Extraction and Ontology Evolution. LNCS (LNAI), vol. 6050, pp. 134–166. Springer, Heidelberg (2011). Scholar
  8. 8.
    Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth. Lect. Semant. Web Theory Technol. 1(1), 1–136 (2011). Scholar
  9. 9.
    Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL Web-querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). Scholar
  10. 10.
    Abele, A., McCrae, J.P., Buitelaar, P., Jentzsch, A., Cyganiak, R.: Linking Open Data cloud diagram (2017). Accessed 01 Jan 2018
  11. 11.
    Kontopoulos, E., Mitzias, P., Riga, M., Kompatsiaris, I.: A domain-agnostic tool for scalable ontology population and enrichment from diverse linked data sources. In: Kalinichenko, L.A., Manolopoulos, Y., Skvortsov, N.A., Sukhomlin, V.A. (eds.) Selected Papers of the XIX International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2017), CEUR Workshop Proceedings 2022, pp. 184–190 (2017)Google Scholar
  12. 12.
    Ruiz-Martınez, J.M., Minarro-Giménez, J.A., Castellanos-Nieves, D., Garcıa-Sánchez, F., Valencia-Garcia, R.: Ontology population: an application for the e-tourism domain. Int. J. Innov. Comput. Inf. Control (IJICIC) 7(11), 6115–6134 (2011)Google Scholar
  13. 13.
    Reyes-Ortiz, J.A., Bravo, M., Pablo, H.: Web services ontology population through text classification. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 491–495. IEEE (2016).
  14. 14.
    Mendes, D., Rodrigues, I.P., Baeta, C.F.: Development and population of an elaborate formal ontology for clinical practice knowledge representation. In: Proceedings of the International Conference on Knowledge Engineering and Ontology Development (2013).
  15. 15.
    Knoell, D., Atzmueller, M., Rieder, C., Scherer, K.P.: BISHOP-big data driven self-learning support for high-performance ontology population. In: Proceedings of the LWDA 2016 (FGWM Special Track), Potsdam, Germany, pp. 157–164. University of Potsdam (2016)Google Scholar
  16. 16.
    Häfner, P., Häfner, V., Wicaksono, H., Ovtcharova, J.: Semi-automated ontology population from building construction drawings. In: Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pp. 379–386 (2013).
  17. 17.
    Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: from spreadsheets to RDF. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008). Scholar
  18. 18.
    Jupp, S., Horridge, M., Iannone, L., Klein, J., Owen, S., Schanstra, J., et al.: Populous: a tool for building OWL ontologies from templates. BMC Bioinf. 13(Suppl 1), S5 (2012). Scholar
  19. 19.
    Araujo, C., Henriques, P.R., Martini, R.G.: Automatizing ontology population to drive the navigation on virtual learning spaces. In: 12th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2017).
  20. 20.
    Gavankar, C., Kulkarni, A., Fang Li, Y., Ramakrishnan, G.: Enriching an academic knowledge base using linked open data. In: 24th International Conference on Computational Linguistics, p. 51 (2012)Google Scholar
  21. 21.
    Agarwal, S., Singhal, A.: Autonomous ontology population from DBpedia based on context sensitive entity recognition. In: Fourth International Joint Conference on Advances in Engineering and Technology, AET, pp. 580–589 (2013).
  22. 22.
    Tiddi, I., Mustapha, N.B., Vanrompay, Y., Aufaure, M.-A.: Ontology Learning from Open Linked Data and Web Snippets. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012. LNCS, vol. 7567, pp. 434–443. Springer, Heidelberg (2012). Scholar
  23. 23.
    Mitzias, P., et al.: User-driven ontology population from linked data sources. In: Ngonga Ngomo, A.-C., Křemen, P. (eds.) KESW 2016. CCIS, vol. 649, pp. 31–41. Springer, Cham (2016). Scholar
  24. 24.
    Wacker, M.: Linked Data for Cultural Heritage, edited by Ed Jones, Michele Seikel. ALA Editions, Chicago (2016)Google Scholar
  25. 25.
    Belam, M.: What is the value of linked data to the news industry? In: The Guardian (2010). Accessed 01 Jan 2018
  26. 26.
    Callahan, A., Cruz-Toledo, J., Dumontier, M.: Ontology-based querying with Bio2RDF’s linked open data. J. Biomed. Semant. 4(1), S1 (2013). Scholar
  27. 27.
    Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., et al.: The EBI RDF platform: linked open data for the life sciences. Bioinformatics 30(9), 1338–1339 (2014). Scholar
  28. 28.
    Booshehri, M., Luksch, P.: An ontology enrichment approach by using DBpedia. In: Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics WIMS 2015 (2015).
  29. 29.
    Isaac, A., Summers, E.: SKOS Simple Knowledge Organization System. Primer, World Wide Web Consortium W3C (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marina Riga
    • 1
  • Panagiotis Mitzias
    • 1
  • Efstratios Kontopoulos
    • 1
    Email author
  • Ioannis Kompatsiaris
    • 1
  1. 1.Information Technologies InstituteThessalonikiGreece

Personalised recommendations