Skip to main content

A Comprehensive Approach to Stormwater Management Problems in the Next Generation Drainage Networks

  • Chapter
  • First Online:
The Internet of Things for Smart Urban Ecosystems

Part of the book series: Internet of Things ((ITTCC))

Abstract

In an urban environment, sewer flooding and combined sewer overflows (CSOs) are a potential risk to human life, economic assets and the environment. In this way, traditional urban drainage techniques seem to be inadequate for the purpose so to mitigate such phenomena, new techniques such as Real Time Control (RTC) of urban drainage systems and Low Impact Development (LID) techniques represent a valid and cost-effective solution. This chapter lists some of the recent experiences in the field of Urban Hydrology consisting in a series of facilities, fully equipped with sensors and other electronical component, to prevent flooding in urban areas. A series of innovative numerical analysis (in Urban Hydrology research) have been proposed to define properties of the hydrological/hydraulic models used to reproduce the natural processes involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Achleitner, M. Möderl, W. Rauch, CITY DRAIN ©—an open source approach for simulation of integrated urban drainage systems. Environ. Model. Softw. 22, 1184–1195 (2007). https://doi.org/10.1016/j.envsoft.2006.06.013

    Article  Google Scholar 

  2. R.G. Allen, L.S. Pereira, D. Raes, M. Smith, FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration, FAO. Rome (1998)

    Google Scholar 

  3. G.E.B. Archer, A. Saltelli, I.M. Sobol, Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. Comput. Simul. 58, 99–120 (1997). https://doi.org/10.1080/00949659708811825

    Article  MATH  Google Scholar 

  4. K. Astrom, PID controllers: theory, design and tuning. Instrum. Soc. Am. (1995). ISBN 1556175167

    Google Scholar 

  5. P.M. Bach, W. Rauch, P.S. Mikkelsen, D.T. McCarthy, A. Deletic, A critical review of integrated urban water modelling—urban drainage and beyond. Environ. Model. Softw. (2014). https://doi.org/10.1016/j.envsoft.2013.12.018

  6. G. Barenblatt, I. Zheltov, I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24, 1286–1303 (1960). https://doi.org/10.1016/0021-8928(60)90107-6

    Article  MATH  Google Scholar 

  7. T. Beeneken, V. Erbe, A. Messmer, C. Reder, R. Rohlfing, M. Scheer, M. Schuetze, B. Schumacher, M. Weilandt, M. Weyand, Real time control (RTC) of urban drainage systems—a discussion of the additional efforts compared to conventionally operated systems. Urban Water J. 10, 293–299 (2013). https://doi.org/10.1080/1573062X.2013.790980

    Article  Google Scholar 

  8. G. Brunetti, J. Simunek, P. Piro, A comprehensive analysis of the variably-saturated hydraulic behavior of a green roof in a mediterranean climate. Vadose Zo. J. 15 (in press) (2016a). https://doi.org/10.2136/vzj2016.04.0032

  9. G. Brunetti, J. Šimůnek, P. Piro, A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. J. Hydrol. 540, 1146–1161 (2016). https://doi.org/10.1016/j.jhydrol.2016.07.030

    Article  Google Scholar 

  10. G. Brunetti, J. Šimůnek, M. Turco, P. Piro, On the use of surrogate-based modeling for the numerical analysis of low impact development techniques. J. Hydrol. 548, 263–277 (2017). https://doi.org/10.1016/j.jhydrol.2017.03.013

    Article  Google Scholar 

  11. M. Carbone, F. Principato, G. Garofalo, P. Piro, Comparison of evapotranspiration computation by FAO-56 and Hargreaves methods. J. Irrig. Drain. Eng. 142(8), 06016007 (2016). https://doi.org/10.1061/(ASCE)IR.1943-4774.0001032

    Article  Google Scholar 

  12. M. Carbone, G. Brunetti, P. Piro, Modelling the hydraulic behaviour of growing media with the explicit finite volume solution. Water (Switzerland) 7, 568–591 (2015). https://doi.org/10.3390/w7020568

    Article  Google Scholar 

  13. M. Carbone, M. Turco, G. Brunetti, P. Piro, A cumulative rainfall function for subhourly design storm in mediterranean urban areas. Adv. Meteorol. 2015, 1–10 (2015). https://doi.org/10.1155/2015/528564

    Article  Google Scholar 

  14. M. Carbone, M. Turco, G. Nigro, P. Piro, Modeling of hydraulic behaviour of green roof in catchment scale, in 14th SGEM GeoConference on Water Resources. Forest, Marine and Ocean Ecosystems (2014a), pp. 471–478. https://doi.org/10.5593/sgem2014/b31/s12.061

  15. M. Carbone, F. Principato, G. Nigro, P. Piro, Proposal of a conceptual model as tool for the hydraulic design of vegetated roof, in Applied Mechanics and Materials, vol. 641 (Trans Tech Publications, 2014b), pp. 326–331. https://doi.org/10.4028/www.scientific.net/AMM.641-642.326

  16. M. Carbone, G. Garofalo, P. Piro, Decentralized real time control in combined sewer system by using smart objects. Procedia Eng. 473–478 (2014c). https://doi.org/10.1016/j.proeng.2014.11.237

  17. M. Carini, M. Maiolo, D. Pantusa, F. Chiaravalloti, G. Capano, Modelling and optimization of least-cost water distribution networks with multiple supply sources and user. Ricerche Mat. 2017 (2017). https://doi.org/10.1007/s11587-017-0343-y

  18. B. Cheviron, Y. Coquet, Sensitivity analysis of transient-MIM HYDRUS-1D: case study related to pesticide fate in soils. Vadose Zo. J. 8, 1064 (2009). https://doi.org/10.2136/vzj2009.0023

    Article  Google Scholar 

  19. G. Dirckx, M. Schütze, S. Kroll, C. Thoeye, G. De Gueldre, B. Van De Steene, Cost-efficiency of RTC for CSO impact mitigation. Urban Water J. 8, 367–377 (2011). https://doi.org/10.1080/1573062X.2011.630092

    Article  Google Scholar 

  20. W. Durner, Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30, 211–223 (1994). https://doi.org/10.1029/93WR02676

    Article  Google Scholar 

  21. B. Efron, R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986)

    Article  MathSciNet  Google Scholar 

  22. A.H. Elliott, S.A. Trowsdale, A review of models for low impact urban stormwater drainage. Environ. Model. & Softw. 22, 394–405 (2007). https://doi.org/10.1016/j.envsoft.2005.12.005

    Article  Google Scholar 

  23. G. Fu, D. Butler, S.-T. Khu, Multiple objective optimal control of integrated urban wastewater systems. Environ. Model Softw. 23, 225–234 (2008). https://doi.org/10.1016/j.envsoft.2007.06.003

    Article  Google Scholar 

  24. A. Giordano, G. Spezzano, A. Vinci, G. Garofalo, P. Piro, A cyber-physical system for distributed real-time control of urban drainage networks in smart cities, in International Conference on Internet and Distributed Computing Systems (Springer, Cham, 2014), pp. 87–98. https://doi.org/10.1007/978-3-319-11692-1_8

  25. G. Garofalo, A. Giordano, P. Piro, G. Spezzano, A. Vinci, A distributed real-time approach for mitigating CSO and flooding in urban drainage systems. J. Netw. Comput. Appl. 78, 30–42 (2017). https://doi.org/10.1016/j.jnca.2016.11.004

    Article  Google Scholar 

  26. G. Garofalo, S. Palermo, F. Principato, T. Theodosiou, P. Piro, The influence of hydrologic parameters on the hydraulic efficiency of an extensive green roof in mediterranean area. Water 8(2), 44 (2016). https://doi.org/10.3390/w8020044

    Article  Google Scholar 

  27. M.K. Gill, Y.H. Kaheil, A. Khalil, M. McKee, L. Bastidas, Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour. Res. 42, n/a–n/a (2006). https://doi.org/10.1029/2005wr004528

  28. T. Houska, S. Multsch, P. Kraft, H.-G. Frede, L. Breuer, Monte Carlo based calibration and uncertainty analysis of a coupled plant growth and hydrological model. Biogeosci. Discuss. 10, 19509–19540 (2013). https://doi.org/10.5194/bgd-10-19509-2013

    Article  Google Scholar 

  29. J. Huang, J. He, C. Valeo, A. Chu, Temporal evolution modeling of hydraulic and water quality performance of permeable pavements. J. Hydrol. 533, 15–27 (2016). https://doi.org/10.1016/j.jhydrol.2015.11.042

    Article  Google Scholar 

  30. M. Jelasity, A. Montresor, O. Babaoglu, Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23, 219–252 (2005). https://doi.org/10.1145/1082469.1082470

    Article  Google Scholar 

  31. Y. Jiang, C. Liu, C. Huang, X. Wu, Improved particle swarm algorithm for hydrological parameter optimization. Appl. Math. Comput. 217, 3207–3215 (2010). https://doi.org/10.1016/j.amc.2010.08.053

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Kamali, M. Delkash, M. Tajrishy, Evaluation of permeable pavement responses to urban surface runoff. J. Environ. Manag. 187, 43–53 (2017). https://doi.org/10.1016/j.jenvman.2016.11.027

    Article  Google Scholar 

  33. J. Kennedy, R. Eberhart, Particle swarm optimization. Eng. Technol. 1942–1948 (1995)

    Google Scholar 

  34. Z.W. Kundzewicz, M. Radziejewski, I. Pińskwar, Precipitation extremes in the changing climate of Europe. Clim. Res. 31, 51–58 (2006). https://doi.org/10.3354/cr031051

    Article  Google Scholar 

  35. R. Levinson, H. Akbari, Effects of composition and exposure on the solar reflectance of portland cement concrete. Cem. Concr. Res. 32, 1679–1698 (2002). https://doi.org/10.1016/S0008-8846(02)00835-9

    Article  Google Scholar 

  36. Y. Li, R.W. Babcock, Green roof hydrologic performance and modeling: A review (Technol, Water Sci, 2014). https://doi.org/10.2166/wst.2013.770

    Book  Google Scholar 

  37. M. Maiolo, D. Pantusa, An optimization procedure for the sustainable management of water resources. Water Sci. Technol.: Water Supply 16(1), 61–69 (2016). https://doi.org/10.2166/ws.2015.114

  38. S.K. Min, X. Zhang, F.W. Zwiers, G.C. Hegerl, Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011). https://doi.org/10.1038/nature09763

    Article  Google Scholar 

  39. D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Binger, R.D. Harmel, T.L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007). https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  40. J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol. 10, 282–290 (1970). https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  41. T. Pertassek, A. Peters, W. Durner, HYPROP-FIT Software User’s Manual, V.3.0 (2015)

    Google Scholar 

  42. P. Piro, M. Carbone, A modelling approach to assessing variations of total suspended solids (TSS) mass fluxes during storm events. Hydrol. Process. 28, 2419–2426 (2014). https://doi.org/10.1002/hyp.9809

    Article  Google Scholar 

  43. P. Piro, M. Carbone, G. Garofalo, Distributed vs. concentrated storage options for controlling CSO volumes and pollutant loads. Water Pract. Technol. 5, wpt2010071–wpt2010071 (2010a). https://doi.org/10.2166/wpt.2010.071

  44. P. Piro, M. Carbone, G. Garofalo, J. Sansalone, Size distribution of wet weather and dry weather particulate matter entrained in combined flows from an urbanizing sewershed. Water Air Soil Pollut. 206, 83–94 (2010). https://doi.org/10.1007/s11270-009-0088-7

    Article  Google Scholar 

  45. M. Pleau, H. Colas, P. Lavallée, G. Pelletier, R. Bonin, Global optimal real-time control of the Quebec urban drainage system. Environ. Model. Softw. (2005). https://doi.org/10.1016/j.envsoft.2004.02.009

  46. F. Principato, S.A. Palermo, G. Nigro, G. Garofalo, Sustainable strategies and RTC to mitigate CSO’s impact: different scenarios in the highly urbanized catchment of Cosenza, Italy, in Proceedings of the 14th IWA/IAHR International Conference on Urban Drainage, ICUD2017, Prague, CZ, 10–15 Sept 2017, Oral Presentation, pp. 587–589

    Google Scholar 

  47. A. Raimondi, G. Becciu, On pre-filling probability of flood control detention facilities. Urban Water J. 12, 344–351 (2015). https://doi.org/10.1080/1573062X.2014.901398

    Article  Google Scholar 

  48. A. Raimondi, G. Becciu, Probabilistic modeling of rainwater tanks. Procedia Eng. 89, 1493–1499 (2014). https://doi.org/10.1016/j.proeng.2014.11.437

    Article  Google Scholar 

  49. M. Rezaei, P. Seuntjens, I. Joris, W. Boënne, S. Van Hoey, P. Campling, W.M. Cornelis, Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters. Hydrol. Earth Syst. Sci. Discuss. 12, 6881–6920 (2015). https://doi.org/10.5194/hessd-12-6881-2015

    Article  Google Scholar 

  50. L.A. Rossman, Storm water management model quality assurance report: dynamic wave flow routing. Storm Water Manag. Model Qual. Assur. Rep. 1–115 (2006)

    Google Scholar 

  51. A. Saltelli,, S. Tarantola, M. Saisana, M. Nardo, What is sensitivity analysis?, in II Convegno Della Rete Dei Nuclei Di Valutazione E Verifica, Napoli 26, 27 Gennaio 2005, Centro Congressi Universitá Federico II, Via Partenope 36 (2005)

    Google Scholar 

  52. M. Schütze, A. Campisano, H. Colas, W. Schilling, P.A. Vanrolleghem, Real time control of urban wastewater systems—where do we stand today? J. Hydrol. 299, 335–348 (2004). https://doi.org/10.1016/j.jhydrol.2004.08.010

    Article  Google Scholar 

  53. N. She, J. Pang, Physically based green roof model. J. Hydrol. Eng. 15, 458–464 (2010). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000138

    Article  Google Scholar 

  54. J. Šimůnek, M.T. van Genuchten, M. Šejna, Recent developments and applications of the HYDRUS Computer Software Pac. Vadose Zo. J. 15, 25 (2016). https://doi.org/10.2136/vzj2016.04.0033

    Article  Google Scholar 

  55. J. Simunek, N.J. Jarvis, M.T. van Genuchten, A. Gardenas, Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272, 14–35 (2003). https://doi.org/10.1016/S0022-1694(02)00252-4

    Article  Google Scholar 

  56. J. Šimůnek, M.T. van Genuchten, Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zo. J. 7, 782 (2008). https://doi.org/10.2136/vzj2007.0074

    Article  Google Scholar 

  57. J. Šimůnek, M.T. van Genuchten, M. Šejna, Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zo. J. 7, 587 (2008). https://doi.org/10.2136/vzj2007.0077

    Article  Google Scholar 

  58. I. Sobol’, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Turco, R. Kodešová, G. Brunetti, A. Nikodem, M. Fér, P. Piro, Unsaturated hydraulic behaviour of a permeable pavement: laboratory investigation and numerical analysis by using the HYDRUS-2D model. J. Hydrol. 554, 780–791 (2017). https://doi.org/10.1016/j.jhydrol.2017.10.005

    Article  Google Scholar 

  60. UMS GmbH, UMS (2015): Manual HYPROP, Version 2015-01 (2015)

    Google Scholar 

  61. W. Usher, Xantares, D. Hadka, bernardoct, Fernando, J. Herman, C. Mutel, SALib: New documentation, doc strings and installation requirements (2015). https://doi.org/10.5281/zenodo.31316

  62. M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  63. M.T. Van Genuchten, P.J. Wierenga, Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473–480 (1976). https://doi.org/10.2136/sssaj1976.03615995004000040011x

    Article  Google Scholar 

  64. J.E. Warren, P.J. Root, The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3, 245–255 (1963). https://doi.org/10.2118/426-PA

    Article  Google Scholar 

  65. T.H.F. Wong, T.D. Fletcher, H.P. Duncan, G.A. Jenkins, Modelling urban stormwater treatment—a unified approach. Ecol. Eng. 27, 58–70 (2006). https://doi.org/10.1016/j.ecoleng.2005.10.014

    Article  Google Scholar 

  66. M. Wooldridge, An Introduction to MultiAgent Systems, 2nd edn. (Wiley, 2009), ISBN-10 0470519460, ISBN-13 978-0470519462

    Google Scholar 

  67. M. Zambrano-Bigiarini, R. Rojas, A model-independent Particle Swarm Optimisation software for model calibration. Environ. Model Softw. 43, 5–25 (2013). https://doi.org/10.1016/j.envsoft.2013.01.004

    Article  Google Scholar 

  68. S. Zhang, Y. Guo, Analytical probabilistic model for evaluating the hydrologic performance of green roofs. J. Hydrol. Eng. 18, 19–28 (2013). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000593

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Turco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piro, P., Turco, M., Palermo, S.A., Principato, F., Brunetti, G. (2019). A Comprehensive Approach to Stormwater Management Problems in the Next Generation Drainage Networks. In: Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A. (eds) The Internet of Things for Smart Urban Ecosystems. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-319-96550-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96550-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96549-9

  • Online ISBN: 978-3-319-96550-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics