Abstract
In an urban environment, sewer flooding and combined sewer overflows (CSOs) are a potential risk to human life, economic assets and the environment. In this way, traditional urban drainage techniques seem to be inadequate for the purpose so to mitigate such phenomena, new techniques such as Real Time Control (RTC) of urban drainage systems and Low Impact Development (LID) techniques represent a valid and cost-effective solution. This chapter lists some of the recent experiences in the field of Urban Hydrology consisting in a series of facilities, fully equipped with sensors and other electronical component, to prevent flooding in urban areas. A series of innovative numerical analysis (in Urban Hydrology research) have been proposed to define properties of the hydrological/hydraulic models used to reproduce the natural processes involved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
S. Achleitner, M. Möderl, W. Rauch, CITY DRAIN ©—an open source approach for simulation of integrated urban drainage systems. Environ. Model. Softw. 22, 1184–1195 (2007). https://doi.org/10.1016/j.envsoft.2006.06.013
R.G. Allen, L.S. Pereira, D. Raes, M. Smith, FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration, FAO. Rome (1998)
G.E.B. Archer, A. Saltelli, I.M. Sobol, Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. Comput. Simul. 58, 99–120 (1997). https://doi.org/10.1080/00949659708811825
K. Astrom, PID controllers: theory, design and tuning. Instrum. Soc. Am. (1995). ISBN 1556175167
P.M. Bach, W. Rauch, P.S. Mikkelsen, D.T. McCarthy, A. Deletic, A critical review of integrated urban water modelling—urban drainage and beyond. Environ. Model. Softw. (2014). https://doi.org/10.1016/j.envsoft.2013.12.018
G. Barenblatt, I. Zheltov, I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24, 1286–1303 (1960). https://doi.org/10.1016/0021-8928(60)90107-6
T. Beeneken, V. Erbe, A. Messmer, C. Reder, R. Rohlfing, M. Scheer, M. Schuetze, B. Schumacher, M. Weilandt, M. Weyand, Real time control (RTC) of urban drainage systems—a discussion of the additional efforts compared to conventionally operated systems. Urban Water J. 10, 293–299 (2013). https://doi.org/10.1080/1573062X.2013.790980
G. Brunetti, J. Simunek, P. Piro, A comprehensive analysis of the variably-saturated hydraulic behavior of a green roof in a mediterranean climate. Vadose Zo. J. 15 (in press) (2016a). https://doi.org/10.2136/vzj2016.04.0032
G. Brunetti, J. Šimůnek, P. Piro, A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. J. Hydrol. 540, 1146–1161 (2016). https://doi.org/10.1016/j.jhydrol.2016.07.030
G. Brunetti, J. Šimůnek, M. Turco, P. Piro, On the use of surrogate-based modeling for the numerical analysis of low impact development techniques. J. Hydrol. 548, 263–277 (2017). https://doi.org/10.1016/j.jhydrol.2017.03.013
M. Carbone, F. Principato, G. Garofalo, P. Piro, Comparison of evapotranspiration computation by FAO-56 and Hargreaves methods. J. Irrig. Drain. Eng. 142(8), 06016007 (2016). https://doi.org/10.1061/(ASCE)IR.1943-4774.0001032
M. Carbone, G. Brunetti, P. Piro, Modelling the hydraulic behaviour of growing media with the explicit finite volume solution. Water (Switzerland) 7, 568–591 (2015). https://doi.org/10.3390/w7020568
M. Carbone, M. Turco, G. Brunetti, P. Piro, A cumulative rainfall function for subhourly design storm in mediterranean urban areas. Adv. Meteorol. 2015, 1–10 (2015). https://doi.org/10.1155/2015/528564
M. Carbone, M. Turco, G. Nigro, P. Piro, Modeling of hydraulic behaviour of green roof in catchment scale, in 14th SGEM GeoConference on Water Resources. Forest, Marine and Ocean Ecosystems (2014a), pp. 471–478. https://doi.org/10.5593/sgem2014/b31/s12.061
M. Carbone, F. Principato, G. Nigro, P. Piro, Proposal of a conceptual model as tool for the hydraulic design of vegetated roof, in Applied Mechanics and Materials, vol. 641 (Trans Tech Publications, 2014b), pp. 326–331. https://doi.org/10.4028/www.scientific.net/AMM.641-642.326
M. Carbone, G. Garofalo, P. Piro, Decentralized real time control in combined sewer system by using smart objects. Procedia Eng. 473–478 (2014c). https://doi.org/10.1016/j.proeng.2014.11.237
M. Carini, M. Maiolo, D. Pantusa, F. Chiaravalloti, G. Capano, Modelling and optimization of least-cost water distribution networks with multiple supply sources and user. Ricerche Mat. 2017 (2017). https://doi.org/10.1007/s11587-017-0343-y
B. Cheviron, Y. Coquet, Sensitivity analysis of transient-MIM HYDRUS-1D: case study related to pesticide fate in soils. Vadose Zo. J. 8, 1064 (2009). https://doi.org/10.2136/vzj2009.0023
G. Dirckx, M. Schütze, S. Kroll, C. Thoeye, G. De Gueldre, B. Van De Steene, Cost-efficiency of RTC for CSO impact mitigation. Urban Water J. 8, 367–377 (2011). https://doi.org/10.1080/1573062X.2011.630092
W. Durner, Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30, 211–223 (1994). https://doi.org/10.1029/93WR02676
B. Efron, R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986)
A.H. Elliott, S.A. Trowsdale, A review of models for low impact urban stormwater drainage. Environ. Model. & Softw. 22, 394–405 (2007). https://doi.org/10.1016/j.envsoft.2005.12.005
G. Fu, D. Butler, S.-T. Khu, Multiple objective optimal control of integrated urban wastewater systems. Environ. Model Softw. 23, 225–234 (2008). https://doi.org/10.1016/j.envsoft.2007.06.003
A. Giordano, G. Spezzano, A. Vinci, G. Garofalo, P. Piro, A cyber-physical system for distributed real-time control of urban drainage networks in smart cities, in International Conference on Internet and Distributed Computing Systems (Springer, Cham, 2014), pp. 87–98. https://doi.org/10.1007/978-3-319-11692-1_8
G. Garofalo, A. Giordano, P. Piro, G. Spezzano, A. Vinci, A distributed real-time approach for mitigating CSO and flooding in urban drainage systems. J. Netw. Comput. Appl. 78, 30–42 (2017). https://doi.org/10.1016/j.jnca.2016.11.004
G. Garofalo, S. Palermo, F. Principato, T. Theodosiou, P. Piro, The influence of hydrologic parameters on the hydraulic efficiency of an extensive green roof in mediterranean area. Water 8(2), 44 (2016). https://doi.org/10.3390/w8020044
M.K. Gill, Y.H. Kaheil, A. Khalil, M. McKee, L. Bastidas, Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour. Res. 42, n/a–n/a (2006). https://doi.org/10.1029/2005wr004528
T. Houska, S. Multsch, P. Kraft, H.-G. Frede, L. Breuer, Monte Carlo based calibration and uncertainty analysis of a coupled plant growth and hydrological model. Biogeosci. Discuss. 10, 19509–19540 (2013). https://doi.org/10.5194/bgd-10-19509-2013
J. Huang, J. He, C. Valeo, A. Chu, Temporal evolution modeling of hydraulic and water quality performance of permeable pavements. J. Hydrol. 533, 15–27 (2016). https://doi.org/10.1016/j.jhydrol.2015.11.042
M. Jelasity, A. Montresor, O. Babaoglu, Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23, 219–252 (2005). https://doi.org/10.1145/1082469.1082470
Y. Jiang, C. Liu, C. Huang, X. Wu, Improved particle swarm algorithm for hydrological parameter optimization. Appl. Math. Comput. 217, 3207–3215 (2010). https://doi.org/10.1016/j.amc.2010.08.053
M. Kamali, M. Delkash, M. Tajrishy, Evaluation of permeable pavement responses to urban surface runoff. J. Environ. Manag. 187, 43–53 (2017). https://doi.org/10.1016/j.jenvman.2016.11.027
J. Kennedy, R. Eberhart, Particle swarm optimization. Eng. Technol. 1942–1948 (1995)
Z.W. Kundzewicz, M. Radziejewski, I. Pińskwar, Precipitation extremes in the changing climate of Europe. Clim. Res. 31, 51–58 (2006). https://doi.org/10.3354/cr031051
R. Levinson, H. Akbari, Effects of composition and exposure on the solar reflectance of portland cement concrete. Cem. Concr. Res. 32, 1679–1698 (2002). https://doi.org/10.1016/S0008-8846(02)00835-9
Y. Li, R.W. Babcock, Green roof hydrologic performance and modeling: A review (Technol, Water Sci, 2014). https://doi.org/10.2166/wst.2013.770
M. Maiolo, D. Pantusa, An optimization procedure for the sustainable management of water resources. Water Sci. Technol.: Water Supply 16(1), 61–69 (2016). https://doi.org/10.2166/ws.2015.114
S.K. Min, X. Zhang, F.W. Zwiers, G.C. Hegerl, Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011). https://doi.org/10.1038/nature09763
D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Binger, R.D. Harmel, T.L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007). https://doi.org/10.13031/2013.23153
J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol. 10, 282–290 (1970). https://doi.org/10.1016/0022-1694(70)90255-6
T. Pertassek, A. Peters, W. Durner, HYPROP-FIT Software User’s Manual, V.3.0 (2015)
P. Piro, M. Carbone, A modelling approach to assessing variations of total suspended solids (TSS) mass fluxes during storm events. Hydrol. Process. 28, 2419–2426 (2014). https://doi.org/10.1002/hyp.9809
P. Piro, M. Carbone, G. Garofalo, Distributed vs. concentrated storage options for controlling CSO volumes and pollutant loads. Water Pract. Technol. 5, wpt2010071–wpt2010071 (2010a). https://doi.org/10.2166/wpt.2010.071
P. Piro, M. Carbone, G. Garofalo, J. Sansalone, Size distribution of wet weather and dry weather particulate matter entrained in combined flows from an urbanizing sewershed. Water Air Soil Pollut. 206, 83–94 (2010). https://doi.org/10.1007/s11270-009-0088-7
M. Pleau, H. Colas, P. Lavallée, G. Pelletier, R. Bonin, Global optimal real-time control of the Quebec urban drainage system. Environ. Model. Softw. (2005). https://doi.org/10.1016/j.envsoft.2004.02.009
F. Principato, S.A. Palermo, G. Nigro, G. Garofalo, Sustainable strategies and RTC to mitigate CSO’s impact: different scenarios in the highly urbanized catchment of Cosenza, Italy, in Proceedings of the 14th IWA/IAHR International Conference on Urban Drainage, ICUD2017, Prague, CZ, 10–15 Sept 2017, Oral Presentation, pp. 587–589
A. Raimondi, G. Becciu, On pre-filling probability of flood control detention facilities. Urban Water J. 12, 344–351 (2015). https://doi.org/10.1080/1573062X.2014.901398
A. Raimondi, G. Becciu, Probabilistic modeling of rainwater tanks. Procedia Eng. 89, 1493–1499 (2014). https://doi.org/10.1016/j.proeng.2014.11.437
M. Rezaei, P. Seuntjens, I. Joris, W. Boënne, S. Van Hoey, P. Campling, W.M. Cornelis, Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters. Hydrol. Earth Syst. Sci. Discuss. 12, 6881–6920 (2015). https://doi.org/10.5194/hessd-12-6881-2015
L.A. Rossman, Storm water management model quality assurance report: dynamic wave flow routing. Storm Water Manag. Model Qual. Assur. Rep. 1–115 (2006)
A. Saltelli,, S. Tarantola, M. Saisana, M. Nardo, What is sensitivity analysis?, in II Convegno Della Rete Dei Nuclei Di Valutazione E Verifica, Napoli 26, 27 Gennaio 2005, Centro Congressi Universitá Federico II, Via Partenope 36 (2005)
M. Schütze, A. Campisano, H. Colas, W. Schilling, P.A. Vanrolleghem, Real time control of urban wastewater systems—where do we stand today? J. Hydrol. 299, 335–348 (2004). https://doi.org/10.1016/j.jhydrol.2004.08.010
N. She, J. Pang, Physically based green roof model. J. Hydrol. Eng. 15, 458–464 (2010). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000138
J. Šimůnek, M.T. van Genuchten, M. Šejna, Recent developments and applications of the HYDRUS Computer Software Pac. Vadose Zo. J. 15, 25 (2016). https://doi.org/10.2136/vzj2016.04.0033
J. Simunek, N.J. Jarvis, M.T. van Genuchten, A. Gardenas, Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272, 14–35 (2003). https://doi.org/10.1016/S0022-1694(02)00252-4
J. Šimůnek, M.T. van Genuchten, Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zo. J. 7, 782 (2008). https://doi.org/10.2136/vzj2007.0074
J. Šimůnek, M.T. van Genuchten, M. Šejna, Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zo. J. 7, 587 (2008). https://doi.org/10.2136/vzj2007.0077
I. Sobol’, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6
M. Turco, R. Kodešová, G. Brunetti, A. Nikodem, M. Fér, P. Piro, Unsaturated hydraulic behaviour of a permeable pavement: laboratory investigation and numerical analysis by using the HYDRUS-2D model. J. Hydrol. 554, 780–791 (2017). https://doi.org/10.1016/j.jhydrol.2017.10.005
UMS GmbH, UMS (2015): Manual HYPROP, Version 2015-01 (2015)
W. Usher, Xantares, D. Hadka, bernardoct, Fernando, J. Herman, C. Mutel, SALib: New documentation, doc strings and installation requirements (2015). https://doi.org/10.5281/zenodo.31316
M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x
M.T. Van Genuchten, P.J. Wierenga, Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473–480 (1976). https://doi.org/10.2136/sssaj1976.03615995004000040011x
J.E. Warren, P.J. Root, The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3, 245–255 (1963). https://doi.org/10.2118/426-PA
T.H.F. Wong, T.D. Fletcher, H.P. Duncan, G.A. Jenkins, Modelling urban stormwater treatment—a unified approach. Ecol. Eng. 27, 58–70 (2006). https://doi.org/10.1016/j.ecoleng.2005.10.014
M. Wooldridge, An Introduction to MultiAgent Systems, 2nd edn. (Wiley, 2009), ISBN-10 0470519460, ISBN-13 978-0470519462
M. Zambrano-Bigiarini, R. Rojas, A model-independent Particle Swarm Optimisation software for model calibration. Environ. Model Softw. 43, 5–25 (2013). https://doi.org/10.1016/j.envsoft.2013.01.004
S. Zhang, Y. Guo, Analytical probabilistic model for evaluating the hydrologic performance of green roofs. J. Hydrol. Eng. 18, 19–28 (2013). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000593
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Piro, P., Turco, M., Palermo, S.A., Principato, F., Brunetti, G. (2019). A Comprehensive Approach to Stormwater Management Problems in the Next Generation Drainage Networks. In: Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A. (eds) The Internet of Things for Smart Urban Ecosystems. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-319-96550-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-96550-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96549-9
Online ISBN: 978-3-319-96550-5
eBook Packages: EngineeringEngineering (R0)