Skip to main content

Bioelectricity Generation

  • Chapter
  • First Online:
Bioenergy for Sustainability and Security

Abstract

Bioelectricity refers to electrical potentials and currents occurring within or produced by living organisms. It results from the conversion of chemical energy into electrical energy. Bioelectric potentials are generated by a number of different biological processes and are used by cells to govern metabolism, to conduct impulses along nerve fibres and to regulate muscular contraction. In most organisms bioelectric potentials vary in strength from one to several hundred millivolts from the activity of such electric fishes as the Nile catfish and the electric eel. Bioelectric effects were known in ancient times. There are numerous species of electric ray; most inhabit shallow water, but some (Benthobatis) live at depths of 1000 m (3300 ft) and more. Slow-moving bottom dwellers, electric rays feed on fishes and invertebrates. The shock from these organs is used in defence, sensory location and capturing prey. Electric shocks emitted reach 220 volts and are strong enough to fell a human adult. In ancient Greece and Rome, the shocks of the species Torpedo nobiliana were used as a treatment for gout, headache and other malady.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonopoulou, KG et al (2010). Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem. Eng. J., 50: 10-15.

    Article  Google Scholar 

  2. Rahimnejad, GM and Najafpour, AA (2011). Ghoreyshi Effect of mass transfer on performance of microbial fuel cell. Intech, 5: 233-250.

    Google Scholar 

  3. Sharma, Y and Li, B (2010). The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresource Technol., 101: 1844-1850.

    Article  Google Scholar 

  4. Logan, BE et al (2006). Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40: 5181-5192.

    Article  Google Scholar 

  5. Najafpour, G et al (2011). The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Sourc., 33: 2239-2248.

    Article  Google Scholar 

  6. Rabaey, K et al (2005). Microbial fuel cells: Performances and perspectives. In: Lens, PN, Westermann, P, Haberbauer, M and Moreno, A (eds), Biofuels for fuel cells. London: IWA.

    Google Scholar 

  7. Logan, BE and Regan, JM (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol., 14(12): 512-518.

    Article  Google Scholar 

  8. Pham, TH et al (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci., 6: 285-292.

    Article  Google Scholar 

  9. Ghangrekar, MM and Shinde, VB (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol., 98(15): 2879-2885.

    Article  Google Scholar 

  10. Lovely, DR (2006). Microbial Energizers: Fuel Cells that Keep on Going. Microbe., 1: 324-329.

    Google Scholar 

  11. Logan, BE (2113) Exoelectrogenic bacteria that power microbial fuel cells. Nature 2009, DOI: 10.1038/nrmicro

    Google Scholar 

  12. Kim, GT et al (2006). Bacterial community structure, compartmentalization and activity in a microbial fuel cell. Journal of Applied Microbiology, DOI:https://doi.org/10.1111/j.1365-2672.2006.02923.x

    Article  Google Scholar 

  13. Gottenbos, B et al (1999). Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods in Enzymology, 310: 523-533.

    Article  Google Scholar 

  14. Kim, IS et al (2008). Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environmental Engineering Research, 13(2): 51-65.

    Article  Google Scholar 

  15. Ringeisen, BR et al (2007). A miniature microbial fuel cell operating with an aerobic anode chamber. Journal of power sources, DOI:https://doi.org/10.1016/j.jpowsour.2006.10.026

    Article  Google Scholar 

  16. Kim, HJ et al (2002). A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella, putrefaciens. Enzyme. Microb. Tech., 30: 145-152.

    Article  Google Scholar 

  17. Bond, DR and Lovley, DR (2003). Electricity production by Geobacter sulphur reducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555.

    Article  Google Scholar 

  18. Min, B et al (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 39: 1675-1686.

    Article  Google Scholar 

  19. Chaudhuri, SK and Lovley, DR (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21: 1229-1232.

    Article  Google Scholar 

  20. Rabaey, K and Verstraete, W (2003). Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol, 23: 291-298.

    Article  Google Scholar 

  21. Leropoulos, I et al (2003). Imitation metabolism: Energy autonomy in biologically inspired robots. In: Proceedings of 2nd International Symposium on Imitation of Animals and Artifacts.

    Google Scholar 

  22. Watanabe, K et al (2009). Electron shuttles in biotechnology. Curr. Opin. Biotechnol., 20: 633-641.

    Article  Google Scholar 

  23. Cheng, S et al (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40: 2426-2432.

    Article  Google Scholar 

  24. He, Z et al (2007). Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens. Bioelectron, 22: 3252-3255.

    Article  Google Scholar 

  25. He, Z et al (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol, 39: 5262-5267.

    Article  Google Scholar 

  26. Scafer, H and Muyzer, G (2001). Denaturing gradient gelelectrophoresis in marine microbial ecology. In: Methods in Microbiology. Paul, J (Ed.). Academic Press London.

    Google Scholar 

  27. Liu, H et al (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol, 39: 5488-5493.

    Article  Google Scholar 

  28. Davis, F and Higson, S (2005). Biofuel cells—Recent advances and applications. Biosens. Bioelectron, 22: 1224-1235.

    Article  Google Scholar 

  29. Ieropoulos, I et al (2006). Comparative study of three types of microbial fuel cell. Enzyme Microb Tech, 37: 238-245.

    Article  Google Scholar 

  30. Moon, H et al (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour. Technol., 97: 621-627.

    Article  Google Scholar 

  31. Oh, S and Logan, BE (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol., 70: 162-169.

    Article  Google Scholar 

  32. Rabaey, K et al (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett, 25: 1531-1535.

    Article  Google Scholar 

  33. Rabaery, K et al (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci.Technol., 39: 3401-3408.

    Article  Google Scholar 

  34. Rozendal, RA et al (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol, 40: 5206-5211.

    Article  Google Scholar 

  35. Min, B et al (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39: 4961-4968.

    Article  Google Scholar 

  36. Kim, JR et al (2008). Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol. Bioeng, 99: 1120-1127.

    Article  Google Scholar 

  37. Henslee, BE et al (2004). Biological Fuel Cell: Modeling, Design, and Testing. Final Report for ASAE’s G.B. Gunlogs on Student Environmental Design Competition. Ohio State University, Columbus, Ohio.

    Google Scholar 

  38. Bennetto, HP (1990). Electricity generation by microorganisms. Bio-technology Education, 4: 163-168.

    Google Scholar 

  39. Delaney, GM (2008). Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations. Journal of Chemical Technology and Biotechnology, 34: 13-27 doi: https://doi.org/10.1002/jctb.280340104 .

    Article  Google Scholar 

  40. Lithgow, AM et al (1986). Interception of electron-transport chain in bacteria with hydrophilic redox mediators. J. Chem. Research, (S): 178–179.

    Google Scholar 

  41. Kim, BH et al (1999). Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefaciencs (PDF). J Microbiol. Biotechnol., 9: 127-131.

    Google Scholar 

  42. Pham, CA et al (2003). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiology Letters, 223(1): 129-134.

    Article  Google Scholar 

  43. http://newatlas.com/plant-microbial-fuel-cell/25163/ (2012). Plant-Microbial Fuel Cell generates electricity from living plants.

  44. Xuejian, Wei et al (2015). Biopower generation in a microfluidic bio-solar panel. Sensors and Actuators B: Chemical, 228: 151. DOI: https://doi.org/10.1016/j.snb.

    Article  Google Scholar 

  45. Aelterman, P et al (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 40: 3388-3394.

    Article  Google Scholar 

  46. Rabaey, Korneel (2005). Tubular Microbial Fuel Cells for Efficient Electricity Generation, Environ. Sci. Technol., 39(20): 8077-8082.

    Article  Google Scholar 

  47. Gregoire, KP and Becker, JG (2012). Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity. Bioresource Technology, 119: 208-215.

    Article  Google Scholar 

  48. Wei, J (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20): 9335-9344.

    Article  Google Scholar 

  49. Pec, MK (2010). Reticulated vitreous carbon: A useful material for cell adhesion and tissue invasion. Eur. Cells Mater., 20: 282.

    Article  Google Scholar 

  50. Wang, X et al (2009). Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43: 17, 6870-6874.

    Article  Google Scholar 

  51. Liang, P (2008). Electricity generation using the packing-type microbial fuel cells. Huan. Jing. Ke. Xue., 29: 512-517.

    Google Scholar 

  52. Iijima, S (1991). Helical microtubules of graphitic carbon. Nature 354(6348): 56.

    Article  Google Scholar 

  53. Correa-Duarte et al (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett., 4(11): 2233.

    Article  Google Scholar 

  54. Heister, E (2013). Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces, 5(6): 1870.

    Article  Google Scholar 

  55. Cheng, S and Logan, BE (2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9(3): 492.

    Article  Google Scholar 

  56. Zhang, Y (2011). A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources, 196(13): 5402.

    Article  Google Scholar 

  57. Ghasemi, M (2011). Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int. J. Hydrog. Energy, 36(21): 13746. doi:https://doi.org/10.1016/j.ijhydene.2011.07.118

    Article  Google Scholar 

  58. Yuan, Y (2011). Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresour. Technol., 102(10): 5849.

    Article  Google Scholar 

  59. Cheng, S (2006). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 40(1): 364.

    Article  Google Scholar 

  60. Harnisch, F and Schröder, U (2010). From MFC to MXC: Chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev., 39(11): 4433.

    Article  Google Scholar 

  61. Park, DH and Zeikus, JG (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 81(3): 348.

    Article  Google Scholar 

  62. Rabaey, K and Rozendal, RA (2010). Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat. Rev. Microbiol., 8(10): 706.

    Article  Google Scholar 

  63. Li, WW (2011). Recent advances in the separators for microbial fuel cells. Bioresource. Technol., 102: 244-252.

    Article  Google Scholar 

  64. Hideo, K (2014). Ion Exchange Membranes, Ion Exchangers. Korean Journal of Chemical Engineering, 31: 1187-1193.

    Article  Google Scholar 

  65. Kim, JR (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol., 41: 1004-1009.

    Article  Google Scholar 

  66. Zhang, X (2009). Logan Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol., 43: 8456-8461.

    Article  Google Scholar 

  67. Zhuang, L (2012). Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresource Technol., 106: 82-88.

    Article  Google Scholar 

  68. Dihrab, SS(2009). Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renew. Sust. Energy Rev., 13: 1663-1668.

    Article  Google Scholar 

  69. Pasternak, G. et al (2016). Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. Chem Sus Chem, 9(1): 88-96.

    Article  Google Scholar 

  70. Manaswini, B (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, 101(4): 1183-1189.

    Article  Google Scholar 

  71. Winfield, J (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12): 1913-1921.

    Article  Google Scholar 

  72. Bengamin, Erable et al (2012). Microbial Catalysis of the Oxygen Reduction Reaction for Microbial Fuel Cells: A Review. 5(6): 975-987.

    Google Scholar 

  73. Berk, RS and Canfield, JH (1964). Bioelectrochemical energy conversion. Appl. Microbiol., 12: 10-12.

    Google Scholar 

  74. Rao, JR et al (1976). The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerg., 3: 139-150.

    Article  Google Scholar 

  75. Logan, BE (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85(6): 1665.

    Article  Google Scholar 

  76. Rismani-Yazdi (2008). Cathodic limitations in microbial fuel cells: An overview. J. Power Sources, 180(2): 683.

    Article  Google Scholar 

  77. Duncan Graham-Rowe (2012). Giving waste water the power to clean itself: A novel form of renewable energy can generate electricity from waste-water treatment. Nature, doi:https://doi.org/10.1038/nature.10153

  78. Rahimnejad, M (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy, 88: 3999-4004.

    Article  Google Scholar 

  79. Yang, H et al (2015). Microbial fuel cells for biosensor applications. Biotechnol Lett. 37(12): 2357-2364. doi: https://doi.org/10.1007/s10529-015-1929-7.

    Article  Google Scholar 

  80. Hailiang, Song et al (2017). Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems. Water, 9(185): 2-13.

    Google Scholar 

  81. Theerkadharshini, S (2017). Production of Hydrogen Fuel from Waste Water Using Microbial Fuel Cell. International Journal of Innovative Research in Science, Engineering and Technology, 6(3): 4211-4215.

    Google Scholar 

  82. Michael, GW and Thomas, AT (2013). Review of Microbial Fuel Cells for wastewater treatment: Large-scale application, future need and current research gaps. In: Proceedings of the ASME 2013 7th International Conference on Energy Sustainability & 11th Fuel Cell Science, Engineering and Technology Conference.

    Google Scholar 

  83. Logan, B (2005). Generating Electricity from Wastewater Treatment. (Editorial). Water Environment Research, 77(3): 209.

    Google Scholar 

  84. Trabold, TA ( 2011). Analysis of waste-to-energy opportunities in the New York State food processing industry. In: Proceedings of the ASME 5th International Conference on Energy Sustainability, Paper ES Fuel Cell 2011-54334, Washington D.C.

    Google Scholar 

  85. Liang, S (2008). Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor systems. Journal of Membrane Science, 310(1–2): 503-511.

    Article  Google Scholar 

  86. Rittmann, BE (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2): 203-212.

    Article  Google Scholar 

  87. Rabaey, K et al (2007). Microbial ecology meets electrochemistry: Electricity-driven and driving communities. The ISME Journal, l (1): 9-18.

    Article  Google Scholar 

  88. Potter, MC (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84 (571): 260–276.

    Article  Google Scholar 

  89. Kim, HJ (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol, 9(3): 365-367.

    MathSciNet  Google Scholar 

  90. Liu, HR et al (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38(7): 2281-2285.

    Article  Google Scholar 

  91. Yatala Case Study – Australian Water Recycling Centre of Excellence www.australianwaterrecycling.com.au/_literature_145825/Yatala

  92. Ge, Z. and Zhen, He (2015). Energy extraction from a large scale microbial fuel cell system treating municipal waste water. Journal of Power Sources, 297: 260-264.

    Article  Google Scholar 

  93. Webb, B (1999). The first mobile robot. In: Proceedings of TIMR 99, Towards Intelligent Mobile Robots. Bristol.

    Google Scholar 

  94. Ieropoulos, I (2003). Imitating Metabolism: Energy Autonomy in Biologically Inspired Robots. In: Proceedings of the AISB’03, Second International Symposium on Imitation in Animals and Artifacts. SSAISB, Aberystwyth, Wales.

    Google Scholar 

  95. Bennetto, HP (1987). Microbes come to Power. New Scientist, 36-39.

    Google Scholar 

  96. Wilkinson, S (2000). Gastronome – A Pioneering Food Powered Mobile Robot. In: Proceedings of the 8th IASTED, International Conference on Robotics and Applications, Paper No. 318-037. Honolulu, Hawaii, USA.

    Google Scholar 

  97. Park, DH and Zeikus, G (2000). Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol., 59: 58-61.

    Google Scholar 

  98. Byung, Hong Kim et al (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letter, 25: 541-545.

    Article  Google Scholar 

  99. UltraLife Corporation (2009). Transportation Regulations for Lithium, Lithium Ion and Lithium Ion Polymer Cells and Batteries. http://www.ultralifecorp.com

  100. Nielsen, ME et al (2007). Enhanced Power from Chambered Benthic Microbial Fuel Cells. Environ. Sci. Technol. (41): 7895-7900.

    Article  Google Scholar 

  101. Reimers, CE (2001). Harvesting Energy from the Marine Sediment-Water Interface. Environ. Sci. Technol., 35: 192-195.

    Article  MathSciNet  Google Scholar 

  102. Tender, LM et al (2009). Harnessing microbially generated power on the seafloor. Nature Biotechnology, 20: 821-825.

    Article  Google Scholar 

  103. Tender, L (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Source, 179: 571-575.

    Article  Google Scholar 

  104. Ieropoulos, J and Greenman, C (2012). Urine utilisation by microbial fuel cells: Energy fuel for the future. Phys. Chem. Chem. Phys., 14: 94-98.

    Article  Google Scholar 

  105. Mobile phone runs on urine power – Bristol Robotics Laboratory www.brl.ac.uk › BRL in the News.

  106. Chen, GW et al (2008). Application of biocathode in microbial fuel cells: Cell performance and microbial community. Appl. Microbiol. Biot., 79: 379-388.

    Article  Google Scholar 

  107. Allen, RM (1993). Microbial fuel-cells. Appl. Biochem. Biotech., 39: 27-40.

    Article  Google Scholar 

  108. Kim, BH (1999). Mediator-less biofuel cell. Google Patents 5976719.

    Google Scholar 

  109. Mokhtarian, N (2012). Bioelectricity generation in biological fuel cell with and without mediators. World Appl. Sci. J., 18: 559-567.

    Google Scholar 

  110. Izadi, P and Rahimnejad, M (2013). Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell. Biofuel Research J., 1: 34-38.

    Article  Google Scholar 

  111. Najafpour, G et al (2010). Bioconversion of whey to electrical energy in a biofuel cell using Saccharomyces cerevisiae. World Appl. Sci. J., 8: 1-5.

    Google Scholar 

  112. Habermann, W and Pommer, E (1991). Biological fuel cells with sulphide storage capacity. App. Microbiol. Biot., 35: 128-133.

    Google Scholar 

  113. Catal, T et al (2008). Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources, 175: 196-200.

    Article  Google Scholar 

  114. Kim, JR (2008). Removal of odors from swine wastewater by using microbial fuel cells. Appl. Environ. Microb., 74: 2540-2543.

    Article  Google Scholar 

  115. Kim M et al (2003). Practical field application of a novel BOD monitoring system. J. Environ. Monit., 5: 640.

    Article  Google Scholar 

  116. Di, Lorenzo (2009). Single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res., 43: 3145-3154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, B.K., Varma, A. (2019). Bioelectricity Generation. In: Bioenergy for Sustainability and Security . Springer, Cham. https://doi.org/10.1007/978-3-319-96538-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96538-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96537-6

  • Online ISBN: 978-3-319-96538-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics