Abstract
Radiation has been reported to be a proven carcinogen which is responsible for more than half of all malignancies. The incident rates, morbidity and mortality of these cancers are increasing and thus reflects a serious health concern in public. Ionizing and Non-ionizing radiation exposure both lead to the development of cancer. Ultraviolet radiation (UVR) which is a non-ionizing radiation damages the DNA and causes genetic mutations. Exposure to Ionizing radiation results in the various oxidizing events altering the structure of atoms through direct interactions of the radiation with the target molecules or via the product of radiolysis of water. In this chapter we have discussed about the role of radiation in DNA damage and related mechanisms associated with cancer.
Keywords
- Radiation
- DNA damage
- Mutation
- Cancer
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Agarwal S, Tafel AA, Kanaar R (2006) DNA double-strand break repair and chromosome translocations. DNA Repair 5(9–10):1075–1081. https://doi.org/10.1016/j.dnarep.2006.05.029
Alberto B, Chance B (1973) The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716. https://doi.org/10.1042/bj1340707
Antipova V, Malakhova V, Bezlepkin L, Vladimir B (2011) Detection of large deletions of mitochondrial DNA in tissues of mice exposed to X-rays. Biofizika 56:439–445
Armstrong BK, Kricker A (1993) How much melanoma is caused by sun exposure. Send Melanoma Res 6:395–401
Arvelo F, Sojo F, Cotte C (2016) Tumour progression and metastasis. Ecancermedicalscience 3:1–25. https://doi.org/10.3332/ecancer.2016.617
Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2):48–60
Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297
Batista LF, Kaina B, Meneghini R, Menck CF (2009) How DNA lesions are turned into powerful killing structures: insights from UV-Induced Apoptosis. Mutat Res—Rev Mutat Res 681(2–3):197–208. https://doi.org/10.1016/j.mrrev.2008.09.001
Benedetto JP, Ortonne JP, Voulot C, Khatchadourian C, Prota G, Thivolet J (1982) Role of thiol compounds in mammalian melanin pigmentation. II. glutathione and related enzymatic activities. J Invest Dermatol 79(6):422–424. https://doi.org/10.1111/1523-1747.ep12530631
Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 212:1635–1655. https://doi.org/10.1101/gad.1324305.GENES
Berwick M, Wiggins C (2006) The current epidemiology of cutaneous malignant melanoma. Send to Front Biosci 11:1244–1254
Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2011) Nat Rev Cancer 8(12):957–967. https://doi.org/10.1038/nrc2523
Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156(2):435–444. https://doi.org/10.1042/bj1560435
Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M et al (2004) Human MicroRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci 101(9):2999–3004. https://doi.org/10.1073/pnas.0307323101
Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WB, Nussenzweig A (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5(7):675–679. https://doi.org/10.1038/ncb1004
Chan DW, Chen BPC (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16:2333–2338. https://doi.org/10.1101/gad.1015202.We
Chao Y, Xue-Min W, Yi-Mei T, Li-Jie Y, Yin-Fen L, Pei-Lan W (2010) Effects of sunscreen on human skin’s ultraviolet radiation tolerance. J Cosmet Dermatol 9(4):297–301. https://doi.org/10.1111/j.1473-2165.2010.00525.x
Chaudhry MA, Omaruddin RA (2011) Mitochondrial gene expression in directly irradiated and nonirradiated bystander cells. Cancer Biother Radiopharm 26:657–663
Chen Q, Chai YC, Mazumder S, Jiang C, Macklis R, Chisolm G, Almasan A (2003) The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ 10(3):323–334. https://doi.org/10.1038/sj.cdd.4401148
Chistiakov DA, Voronova NV, Chistiakov PA (2008) Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol 47(5):809–824. https://doi.org/10.1080/02841860801885969
Chiu HW, Lin W, Ho SY, Wang YJ (2011) Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiat Res 175:547–560
Choi KM, Kang CM, Cho ES, Kang SM, Lee SB, Um HD (2007) Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK. Oncol Rep 17(5):1183–1188
Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24(6):949–961. https://doi.org/10.1038/sj.onc.1208332
D’Arcangelo M, Drew Y, Plummer R (2016) The role of PARP in DNA repair and its therapeutic exploitation. DNA repair in cancer therapy: molecular targets and clinical applications: second edition 105(8):115–134. https://doi.org/10.1016/B978-0-12-803582-5.00004-8
Droge W (2002) Free radicals in the physiological control of cell function. Am Physiol Soc 82:47–95
Du C, Gao Z, Venkatesha VA, Kalen AL, Chaudhuri L, Spitz DR, Cullen JJ, Oberley LW, Goswami PC (2009) Mitochondrial ROS and radiation induced transformation in mouse embryonic fibroblasts. Cancer Biol Ther 8(20):1962–1971. https://doi.org/10.4161/cbt.8.20.9648
Fan R, Kumaravel TS, Jalali F, Marrano P, Squire JA, Bristow RG (2004) Defective DNA strand break repair after DNA damage in prostate cancer cells: implications for genetic instability and prostate cancer progression. Can Res 64(23):8526–8533. https://doi.org/10.1158/0008-5472.CAN-04-1601
Hasselbach L, Haase S, Fischer D, Kolberg HC, Stürzbecher HW (2005) Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol 26(6):589–598
Heale JT, Alexander RB, Schmiesing JA, Kim JS, Kong X, Zhou S, Hudson DF, Earnshaw WC, Yokomori K (2006) Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol Cell 21(6):837–848. https://doi.org/10.1016/j.molcel.2006.01.036
Hein AL, Ouellete MM, Yan Y (2014) Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol 45(5):1813–1819. https://doi.org/10.3892/ijo.2014.2614
Honrado E, Benítez J, Palacios J (2005) The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol 18(10):1305–1320. https://doi.org/10.1038/modpathol.3800453
Ilnytskyy Y, Zemp FJ, Koturbash I, Kovalchuk O (2008) Altered MicroRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism. Biochem Biophys Res Commun 377:41–45
Ito S, Wakamatsu K, Ozeki H (2000) Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigm Cell Res/Sponsored Eur Soc Pigm Cell Res Int Pigm Cell Soc 13(Suppl 8):103–109. https://doi.org/10.1034/j.1600-0749.13.s8.19.x
Jawad M, Seedhouse CH, Russell N, Plumb M (2012) Genes increase the risk of therapy-related acute myeloid leukemia brief report polymorphisms in human homeobox HLX1 and DNA repair RAD51 genes increase the risk of therapy-related acute myeloid leukemia. Blood 108(12):3916–3918. https://doi.org/10.1182/blood-2006-05-022921
Jenuwein T, Allis CD (2001) Allis: translating the histone code. Science 293(August):1074–1080
Kadouri L, Kote-Jarai Z, Hubert A, Durocher F, Abeliovich D, Glaser B, Hamburger T, Eeles RA, Peretz T (2004) A single-nucleotide polymorphism in the RAD51 gene modifies breast cancer risk in BRCA2 carriers, but not in BRCA1 carriers or noncarriers. Br J Cancer 90(10):2002–2005. https://doi.org/10.1038/sj.bjc.6601837
Kawada A (2000) Risk and preventive factors for skin phototype. J Dermatol Sci 23:527–529
Kim JG, Park MT, Heo K, Yang KM, Yi J (2013) Epigenetics meets radiation biology as a new approach in cancer treatment. Int J Mol Sci 14(7):15059–15073. https://doi.org/10.3390/ijms140715059
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201
Leach JK, Glenn VT, Lin P, Schmidt-ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Can Res 1:3894–3901
Levy-Lahad E, Lahad A, Eisenberg S, Dagan E, Paperna T, Kasinetz L, Catane R et al (2001) A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Nat Acad Sci 98(6):3232–3236. https://doi.org/10.1073/pnas.051624098
Limoli CL, Giedzinski E, Bonner WM, Cleaver JE (2002) UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, γH2AX formation, and Mre11 relocalization. Proc Natl Acad Sci USA 99(1):233–238. https://doi.org/10.1073/pnas.231611798
Liu C, Vyas A, Kassab MA, Singh AK, Yu X (2017) The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Research 45(14):8129–8141. https://doi.org/10.1093/nar/gkx565
Lomonaco SL, Finniss S, Xiang C, DeCarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C (2009) The induction of autophagy by? radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125(3):717–722. https://doi.org/10.1002/ijc.24402
Loree J, Koturbash I, Kutanzi K, Baker M, Pogribny I, Kovalchuk O (2006) Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis. Int J Radiat Biol 82:805–815
Los M, Schenk H, Hexel K, Baeuerle PA, Dröge W, Schulze-Osthoff K (1995) IL-2 Gene expression and NF-kappa B activation through CD28 requires reactive oxygen production by 5-lipoxygenase. The EMBO J 14(15):3731–3740
Lu H, Edwards C, Gaskell S, Pearse A, Marks R (1996) Melanin content and distribution in the surface corneocyte with skin phototypes. Send to Br J Dermatol 2:263–267
Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D) J recombination. Cell 108(6):781–794. https://doi.org/10.1016/S0092-8674(02)00671-2
Malakhova L, Bezlepkin VG (2005) The increase in mitochondrial DNA copy number in the tissues of Γ-irradiated mice. Cell Mol Biol Lett 10:721–32. http://www.cmbl.org.pl
Mallet JD, Dorr MM, Desgarnier MCD, Bastien N, Gendron SP, Rochette PJ (2016) Faster DNA repair of ultraviolet-induced cyclobutane pyrimidine dimers and lower sensitivity to apoptosis in human corneal epithelial cells than in epidermal keratinocytes. PLoS ONE 11(9):1–22. https://doi.org/10.1371/journal.pone.0162212
McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB (2006) Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Can Res 66(7):3541–3549. https://doi.org/10.1158/0008-5472.CAN-05-2481
Meyskens FL, Farmer P, Fruehauf JP (2001) Redox regulation in human melanocytes and melanoma. Pigm Cell Res 14(3):148–154. https://doi.org/10.1034/j.1600-0749.2001.140303.x
Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, Guerrero CR et al (2012) A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background. Nature 491(7424):449–453. https://doi.org/10.1038/nature11624.A
Morrison C (2000) The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J 19(3):463–471. https://doi.org/10.1093/emboj/19.3.463
Nakamura T, Canaani E, Croce CM (2007) Oncogenic all1 fusion proteins target drosha-mediated microRNA processing. Proc Natl Acad Sci 104(26):10980–10985. https://doi.org/10.1073/pnas.0704559104
Narayanan DL, Saladi RN, Fox JL (2010) Ultraviolet radiation and skin cancer. Int J Dermatol 49(9):978–986. https://doi.org/10.1111/j.1365-4632.2010.04474.x
Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JCY, Liang G, Jones PA (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2’-deoxycytidine. Cancer Res 323:6456–6461
O’Neill P, Wardman P (2009) Radiation chemistry comes before radiation biology. Int J Radiat Biol 1:9–25
Orazio JD, Jarrett S, Amaro-ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14:12222–12248. https://doi.org/10.3390/ijms140612222
Pain D, Murakami H, Blobel G (1990) Identification of a receptor for protein import into mitochondria. Nature 347:444–449
Paull TT, Lee JH (2005) The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle 4(6):737–740. https://doi.org/10.4161/cc.4.6.1715
Pellegrini L, Yu DS, Lo T, Anand S, Lee MY, Blundell TL, Venkitaraman AR (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420(6913):287–293. https://doi.org/10.1038/nature01230
Peter AJ, Baylin SB (2010) The epigenomics of cancer. Omics Perspect Cancer Res 128(4):51–67. https://doi.org/10.1007/978-90-481-2675-0_4
Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Characteristics of γH2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81:123–129
Pillai S, Oresajo C, Hayward J (2005) Ultraviolet radiation and skin aging : roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—a review. Int J Cosmet Sci 27:17–34
Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278):191–196. https://doi.org/10.1038/nature08658
Pogribny I, Raiche J, Slovack M, Kovalchuk O (2004) Dose-dependence, sex-and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 320:1253–1261
Poulton R, Caspi A, Milne BJ, Thomson WM, Taylor A, Sears MR, Moffitt TE (2013) Association between children´s experience of socioeconomic disadvantage and adult health: a life-course study. Lancet 360(9346):1640–1645. https://doi.org/10.1016/S0140-6736(02)11602-3.Association
Prota G (2000) Melanins, melanogenesis and melanocytes: looking at their functional significance from the chemist’s viewpoint. Pigm Cell Res 13(4):283–293. https://doi.org/10.1034/j.1600-0749.2000.130412.x
Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T (2002) Elevated levels of Rad51 recombination protein in tumor cells. Can Res 62(1):219–225
Raiche J, Rodriguez-Juarez R, Pogribny I, Kovalchuk O (2004) Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-Irradiation in mice. Biochem Biophys Res Commun 325:39–47
Ramasamy K, Shanmugam M, Balupillai A, Govindhasamy K, Gunaseelan S, Muthusamy G, Robert BM, Nagarajan RP (2017) Ultraviolet radiation-induced carcinogenesis: mechanisms and experimental models. J Radiat Cancer Res 8(1):4. https://doi.org/10.4103/0973-0168.199301
Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of uv radiation on DNA and its components. J Photochem Photobiol, B 63(1–3):88–102. https://doi.org/10.1016/S1011-1344(01)00206-8
Ravnbak MH (2010) Objective determination of fitzpatrick skin type. Dan Med Bull 57:B4153
Rebel HG, Bodmann CA, van de Glind GC, de Gruijl FR (2012) UV-induced ablation of the epidermal basal layer including P53-mutant clones resets UV carcinogenesis showing squamous cell carcinomas to originate from interfollicular epidermis. Carcinogenesis 33(3):714–720. https://doi.org/10.1093/carcin/bgs004
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) Double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868. https://doi.org/10.1074/jbc.273.10.5858
Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, Coldiron BM (2010) Incidence estimate of nonmelanoma skin cancer in the United States. Arch Dermatol 146(1538):283–287
Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M et al (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470(7334):359–365. https://doi.org/10.1038/nature09787
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443. https://doi.org/10.1016/j.ccr.2006.04.020
Scherer D, Kumar R (2010) Genetics of pigmentation in skin cancer—a review. Send to Mutat Res 2:141–153
Sealy RC, Hyde JS, Felix CC, Menon IA, Prota G, Swartz HM, Persad S, Haberman HF (1982) Novel free radicals in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc Natl Acad Sci USA 79(9):2885–2889. https://doi.org/10.1073/pnas.79.9.2885
Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N (2004) Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res 10(8):2675–2680. https://doi.org/10.1158/1078-0432.CCR-03-0372
Singh PK, Campbell MJ (2013) The interactions of microRNA and epigenetic modifications in prostate cancer. Cancers (Basel) 5(3):998–1019
Slominski A (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84(4):1155–1228. https://doi.org/10.1152/physrev.00044.2003
Soldatenkov VA, Smulson M (2000) Poly (ADP-ribose) polymerase in DNA damage-response pathway: implications for radiation oncology. Int J Cancer 90(2):59–67. https://doi.org/10.1002/(SICI)1097-0215(20000420)90:2%3c59:AID-IJC1%3e3.0.CO;2-4
Soubeyrand S, Pope L, Chasseval RD, Gosselin D, Dong F, de Villartay JP, Haché RJG (2006) Artemis phosphorylated by DNA-dependent protein kinase associates preferentially with discrete regions of chromatin. Journal of Molecular Biology 358(5):1200–1211. https://doi.org/10.1016/j.jmb.2006.02.061
Spitz DR, Azzam EI, Li JJ, Gius D (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23:311–322
Takahashi A, Ohnishi T (2005) Does γH2AX foci formation depend on the presence of DNA double strand breaks? Send to Cancer Lett 2:171–179
Takeuchi T, Uitto J, Bernstein EF (1998) A novel in vivo model for evaluating agents that protect against ultraviolet a-induced photoaging. Journal of Investigative Dermatology 110(4):343–347. https://doi.org/10.1046/j.1523-1747.1998.00124.x
Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219(2):125–135. https://doi.org/10.1016/j.canlet.2004.08.018
Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, Dent P (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6(3):789–801. https://doi.org/10.1158/1535-7163.MCT-06-0596
Vincensi MR, d’Ischia M, Napolitano A, Procaccini EM, Riccio G, Monfrecola G, Santoianni P, Prota G (1998) Phaeomelanin versus eumelanin as a chemical indicator of ultraviolet sensitivity in fair-skinned subjects at high risk for melanoma: a pilot study. Send to Melanoma Res 1:53–58
Wei H, Yu X (2016) Functions of PARylation in DNA damage repair pathways. Genom Proteomics Bioinform 14(3):131–139. https://doi.org/10.1016/j.gpb.2016.05.001
Wondrak GT, Jacobson MK, Jacobson EL (2006) Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5(2):215–237. https://doi.org/10.1039/B504573H
Yarosh D, Klein J, Kibitel J, Alas L, O’Connor A, Cummings B, Grob D et al (1996) Enzyme therapy of xeroderma pigmentosum: safety and efficacy testing of T4N5 liposome lotion containing a prokaryotic DNA repair enzyme. Photodermatol Photoimmunol Photomed 12(3):122–130. https://doi.org/10.1111/j.1600-0781.1996.tb00188.x
Zhang X, Succi J, Feng Z, Story M, Legerski RJ, Prithivirajsingh S (2004) Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 24(20):9207–9220. https://doi.org/10.1128/MCB.24.20.9207
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chandel, V., Seth, G., Shukla, P., Kumar, D. (2019). Role of Radiation in DNA Damage and Radiation Induced Cancer. In: Kesari, K. (eds) Networking of Mutagens in Environmental Toxicology. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-96511-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-96511-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96510-9
Online ISBN: 978-3-319-96511-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)