Skip to main content

Surgical Management of Hypoplastic Left Heart Syndrome

  • Chapter
  • First Online:
Pediatric Critical Care
  • 1553 Accesses

Abstract

Congenital heart disease is the most common birth defect. The most common severe form of congenital heart disease is hypoplastic left heart syndrome (HLHS), affecting almost 1000 US births per year. Hypoplastic left heart syndrome is defined by underdevelopment of the left side of the heart and obstruction to systemic outflow. This consists of mitral stenosis or atresia, a non-apex-forming hypoplastic left ventricle, aortic stenosis or atresia, a hypoplastic ascending and arch aorta, coarctation of the aorta, and a patent ductus arteriosus.

Current traditional surgical management of HLHS consists of staged palliation to a Fontan circulation. This is composed of the Norwood procedure at birth, second-stage superior cavopulmonary connection at typically 4–6 months of age, and a completion Fontan procedure at 18–48 months of age.

Based on this standard management, outcomes have dramatically improved. However, despite these advances, there is still significant morbidity and mortality associated with HLHS. This has led to investigation into new and alternative therapies. As a result, there is substantial practice pattern variation among institutions and between individual surgeons, cardiologists, and intensivists. This has therefore led to multiple current controversies regarding surgical management of HLHS.

Current controversies include regionalization of care to centers of excellence, the role of fetal cardiac intervention, appropriate management at each stage of palliation, and the role of mechanical circulatory support and transplantation. Regarding first-stage palliation with the Norwood procedure, the appropriate shunt type, use of deep hypothermic circulatory arrest or regional cerebral perfusion, need for delayed sternal closure, and differences in postoperative management remain debated. Lastly, the evolving role of the hybrid Norwood procedure and subsequent management is also being studied.

Advancements in understanding and continued collaboration will be paramount to establish best practices and resolve these current controversies. The hope is this will translate to continued improvement in outcomes for this challenging group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Q, Chen H, Correa A, Devine O, Mathews TJ, Honein MA. Racial differences in infant mortality attributable to birth defects in the United States, 1989–2002. Birth Defects Res A Clin Mol Teratol. 2006;76(10):706–13. https://doi.org/10.1002/bdra.20308.

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.

    Article  PubMed  Google Scholar 

  3. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr. 2008;153(6):807–13. https://doi.org/10.1016/j.jpeds.2008.05.059.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Centers for Disease Control and Prevention. Racial differences by gestational age in neonatal deaths attributable to congenital heart defects – United States, 2003–2006. MMWR Morb Mortal Wkly Rep. 2010;59(37):1208–11.

    Google Scholar 

  5. Fruitman DS. Hypoplastic left heart syndrome: prognosis and management options. Paediatr Child Health. 2000;5(4):219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacobs ML, Mayer JE Jr. Congenital heart surgery nomenclature and database project: single ventricle. Ann Thorac Surg. 2000;69(3, Supplement 1):197–204. https://doi.org/10.1016/S0003-4975(99)01245-X.

    Article  Google Scholar 

  7. Bailey LL, Assaad AN, Trimm RF, Nehlsen-Cannarella SL, Kanakriyeh MS, Haas GS, et al. Orthotopic transplantation during early infancy as therapy for incurable congenital heart disease. Ann Surg. 1988;208(3):279–86. https://doi.org/10.1097/00000658-198809000-00004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bailey LL. The evolution of infant heart transplantation. J Heart Lung Transplant. 2009;28(12):1241–5. https://doi.org/10.1016/j.healun.2009.07.021.

    Article  PubMed  Google Scholar 

  9. Norwood WI, Lang P, Hansen DD. Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N Engl J Med. 1983;308(1):23–6. https://doi.org/10.1056/NEJM198301063080106.

    Article  CAS  PubMed  Google Scholar 

  10. Jacobs JP, Mayer JE Jr, Mavroudis C, O’Brien SM, Austin EH 3rd, Pasquali SK, et al. The Society of Thoracic Surgeons congenital heart surgery database: 2016 update on outcomes and quality. Ann Thorac Surg. 2016;101(3):850–62. https://doi.org/10.1016/j.athoracsur.2016.01.057.

    Article  PubMed  Google Scholar 

  11. Ohye RG, Schranz D, D’Udekem Y. Current therapy for Hypoplastic left heart syndrome and related single ventricle lesions. Circulation. 2016;134(17):1265–79. https://doi.org/10.1161/circulationaha.116.022816.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wernovsky G, Ghanayem N, Ohye RG, Bacha EA, Jacobs JP, Gaynor JW, et al. Hypoplastic left heart syndrome: consensus and controversies in 2007. Cardiol Young. 2007;17(Suppl 2):75–86. https://doi.org/10.1017/S1047951107001187.

    Article  PubMed  Google Scholar 

  13. Pasquali SK, Ohye RG, Lu M, Kaltman J, Caldarone CA, Pizarro C, et al. Variation in perioperative care across centers for infants undergoing the Norwood procedure. J Thorac Cardiovasc Surg. 2012;144(4):915–21. https://doi.org/10.1016/j.jtcvs.2012.05.021.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prager RL, Armenti FR, Bassett JS, Bell GF, Drake D, Hanson EC, et al. Cardiac surgeons and the quality movement: the Michigan experience. Semin Thorac Cardiovasc Surg. 2009;21(1):20–7. https://doi.org/10.1053/j.semtcvs.2009.03.008.

    Article  PubMed  Google Scholar 

  15. Likosky DS, Nugent WC, Ross CS, Northern New England Cardiovascular Disease Study Group. Improving outcomes of cardiac surgery through cooperative efforts: the northern new England experience. Semin Cardiothorac Vasc Anesth. 2005;9(2):119–21. https://doi.org/10.1177/108925320500900203.

    Article  PubMed  Google Scholar 

  16. Anderson JB, Beekman RH 3rd, Kugler JD, Rosenthal GL, Jenkins KJ, Klitzner TS, et al. Improvement in Interstage Survival in a National Pediatric Cardiology Learning Network. Circ Cardiovasc Qual Outcomes. 2015;8(4):428–36. https://doi.org/10.1161/CIRCOUTCOMES.115.001956.

    Article  PubMed  Google Scholar 

  17. Hirsch JC, Gurney JG, Donohue JE, Gebremariam A, Bove EL, Ohye RG. Hospital mortality for Norwood and arterial switch operations as a function of institutional volume. Pediatr Cardiol. 2008;29(4):713–7. https://doi.org/10.1007/s00246-007-9171-2.

    Article  PubMed  Google Scholar 

  18. Hornik CP, He X, Jacobs JP, Li JS, Jaquiss RD, Jacobs ML, et al. Relative impact of surgeon and center volume on early mortality after the Norwood operation. Ann Thorac Surg. 2012;93(6):1992–7. https://doi.org/10.1016/j.athoracsur.2012.01.107.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pasquali SK, He X, Jacobs JP, Jacobs ML, O’Brien SM, Gaynor JW. Evaluation of failure to rescue as a quality metric in pediatric heart surgery: an analysis of the STS congenital heart surgery database. Ann Thorac Surg. 2012;94(2):573–9; discussion 9–80. https://doi.org/10.1016/j.athoracsur.2012.03.065.

    Article  PubMed  Google Scholar 

  20. Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery. N Engl J Med. 2009;361(14):1368–75. https://doi.org/10.1056/NEJMsa0903048.

    Article  CAS  PubMed  Google Scholar 

  21. Feinstein JA, Benson DW, Dubin AM, Cohen MS, Maxey DM, Mahle WT, et al. Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol. 2012;59(1 Suppl):S1–42. https://doi.org/10.1016/j.jacc.2011.09.022.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mahle WT, Clancy RR, McGaurn SP, Goin JE, Clark BJ. Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics. 2001;107(6):1277–82.

    Article  CAS  PubMed  Google Scholar 

  23. Maxwell D, Allan L, Tynan MJ. Balloon dilatation of the aortic valve in the fetus: a report of two cases. Br Heart J. 1991;65(5):256–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohl T, Szabo Z, Suda K, Petrossian E, Ko E, Kececioglu D, et al. Fetoscopic and open transumbilical fetal cardiac catheterization in sheep. Potential approaches for human fetal cardiac intervention. Circulation. 1997;95(4):1048–53.

    Article  CAS  PubMed  Google Scholar 

  25. Kohl T, Sharland G, Allan LD, Gembruch U, Chaoui R, Lopes LM, et al. World experience of percutaneous ultrasound-guided balloon valvuloplasty in human fetuses with severe aortic valve obstruction. Am J Cardiol. 2000;85(10):1230–3.

    Article  CAS  PubMed  Google Scholar 

  26. Kohl T, Witteler R, Strumper D, Gogarten W, Asfour B, Reckers J, et al. Operative techniques and strategies for minimally invasive fetoscopic fetal cardiac interventions in sheep. Surg Endosc. 2000;14(5):424–30.

    Article  CAS  PubMed  Google Scholar 

  27. Kohl T, Strumper D, Witteler R, Merschhoff G, Alexiene R, Callenbeck C, et al. Fetoscopic direct fetal cardiac access in sheep: an important experimental milestone along the route to human fetal cardiac intervention. Circulation. 2000;102(14):1602–4.

    Article  CAS  PubMed  Google Scholar 

  28. Tworetzky W, Wilkins-Haug L, Jennings RW, van der Velde ME, Marshall AC, Marx GR, et al. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation. 2004;110(15):2125–31. https://doi.org/10.1161/01.CIR.0000144357.29279.54.

    Article  PubMed  Google Scholar 

  29. Marshall AC, Tworetzky W, Bergersen L, McElhinney DB, Benson CB, Jennings RW, et al. Aortic valvuloplasty in the fetus: technical characteristics of successful balloon dilation. J Pediatr. 2005;147(4):535–9. https://doi.org/10.1016/j.jpeds.2005.04.055.

    Article  PubMed  Google Scholar 

  30. Selamet Tierney ES, Wald RM, McElhinney DB, Marshall AC, Benson CB, Colan SD, et al. Changes in left heart hemodynamics after technically successful in-utero aortic valvuloplasty. Ultrasound Obstet Gynecol. 2007;30(5):715–20. https://doi.org/10.1002/uog.5132.

    Article  CAS  PubMed  Google Scholar 

  31. McElhinney DB, Marshall AC, Wilkins-Haug LE, Brown DW, Benson CB, Silva V, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120(15):1482–90. https://doi.org/10.1161/CIRCULATIONAHA.109.848994.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mizrahi-Arnaud A, Tworetzky W, Bulich LA, Wilkins-Haug LE, Marshall AC, Benson CB, et al. Pathophysiology, management, and outcomes of fetal hemodynamic instability during prenatal cardiac intervention. Pediatr Res. 2007;62(3):325–30. https://doi.org/10.1203/PDR.0b013e318123fd3a.

    Article  PubMed  Google Scholar 

  33. Vogel M, Wilkins-Haug LE, McElhinney DB, Marshall AC, Benson CB, Silva V, et al. Reversible ductus arteriosus constriction due to maternal indomethacin after fetal intervention for hypoplastic left heart syndrome with intact/restrictive atrial septum. Fetal Diagn Ther. 2010;27(1):40–5. https://doi.org/10.1159/000268290.

    Article  PubMed  Google Scholar 

  34. Rychik J, Rome JJ, Collins MH, DeCampli WM, Spray TL. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol. 1999;34(2):554–60.

    Article  CAS  PubMed  Google Scholar 

  35. Marshall AC, Levine J, Morash D, Silva V, Lock JE, Benson CB, et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat Diagn. 2008;28(11):1023–8. https://doi.org/10.1002/pd.2114.

    Article  PubMed  Google Scholar 

  36. Marshall AC, van der Velde ME, Tworetzky W, Gomez CA, Wilkins-Haug L, Benson CB, et al. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004;110(3):253–8. https://doi.org/10.1161/01.CIR.0000135471.17922.17.

    Article  PubMed  Google Scholar 

  37. Tweddell JS, Mitchell ME, Woods RK, Spray TL, Quintessenza JA. Construction of the right ventricle-to-pulmonary artery conduit in the Norwood: the “Dunk” technique. Oper Tech Thorac Cardiovasc Surg. 2012;17(2):81–98. https://doi.org/10.1053/j.optechstcvs.2012.05.003.

    Article  Google Scholar 

  38. Mascio CE, Spray TL. Distal dunk for right ventricle to pulmonary artery shunt in stage 1 palliation. Ann Thorac Surg. 2015;100(6):2381–2. https://doi.org/10.1016/j.athoracsur.2015.05.024.

    Article  PubMed  Google Scholar 

  39. Norwood WI, Lang P, Casteneda AR, Campbell DN. Experience with operations for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 1981;82(4):511–9.

    CAS  PubMed  Google Scholar 

  40. Kishimoto H, Kawahira Y, Kawata H, Miura T, Iwai S, Mori T. The modified Norwood palliation on a beating heart. J Thorac Cardiovasc Surg. 1999;118(6):1130–2. https://doi.org/10.1016/S0022-5223(99)70118-2.

    Article  CAS  PubMed  Google Scholar 

  41. Sano S, Ishino K, Kawada M, Arai S, Kasahara S, Asai T, et al. Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2003;126(2):504–9; discussion 9–10.

    Article  PubMed  Google Scholar 

  42. Sano S, Ishino K, Kado H, Shiokawa Y, Sakamoto K, Yokota M, et al. Outcome of right ventricle-to-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome: a multi-institutional study. Ann Thorac Surg. 2004;78(6):1951–7; discussion 7–8. https://doi.org/10.1016/j.athoracsur.2004.05.055.

    Article  PubMed  Google Scholar 

  43. Sano S, Ishino K, Kawada M, Honjo O. Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:22–31.

    Article  PubMed  Google Scholar 

  44. Ohye RG, Sleeper LA, Mahony L, Newburger JW, Pearson GD, Lu M, et al. Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med. 2010;362(21):1980–92. https://doi.org/10.1056/NEJMoa0912461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Newburger JW, Sleeper LA, Frommelt PC, Pearson GD, Mahle WT, Chen S, et al. Transplantation-free survival and interventions at 3 years in the single ventricle reconstruction trial. Circulation. 2014;129(20):2013–20. https://doi.org/10.1161/circulationaha.113.006191.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Newburger JW, Sleeper LA, Gaynor JW, Hollenbeck-Pringle D, Frommelt PC, Li JS, et al. Transplant-free survival and interventions at 6 years in the single ventricle reconstruction trial. Circulation. 2018; https://doi.org/10.1161/CIRCULATIONAHA.117.029375.

  47. Si MS, Pearson GD, Ohye RG. Shunt choice in single right ventricle patients: an update. Expert Rev Cardiovasc Ther. 2013;11(12):1691–700. https://doi.org/10.1586/14779072.2013.847790.

    Article  CAS  PubMed  Google Scholar 

  48. Newburger JW, Jonas RA, Wernovsky G, Wypij D, Hickey PR, Kuban KC, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med. 1993;329(15):1057–64. https://doi.org/10.1056/NEJM199310073291501.

    Article  CAS  PubMed  Google Scholar 

  49. Bellinger DC, Wypij D, Kuban KC, Rappaport LA, Hickey PR, Wernovsky G, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100(5):526–32.

    Article  CAS  PubMed  Google Scholar 

  50. Bellinger DC, Wypij D, duPlessis AJ, Rappaport LA, Jonas RA, Wernovsky G, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston circulatory arrest trial. J Thorac Cardiovasc Surg. 2003;126(5):1385–96. https://doi.org/10.1016/S0022.

    Article  PubMed  Google Scholar 

  51. Goldberg CS, Bove EL, Devaney EJ, Mollen E, Schwartz E, Tindall S, et al. A randomized clinical trial of regional cerebral perfusion versus deep hypothermic circulatory arrest: outcomes for infants with functional single ventricle. J Thorac Cardiovasc Surg. 2007;133(4):880–7. https://doi.org/10.1016/j.jtcvs.2006.11.029.

    Article  PubMed  Google Scholar 

  52. Johnson JN, Jaggers J, Li S, O’Brien SM, Li JS, Jacobs JP, et al. Center variation and outcomes associated with delayed sternal closure after stage 1 palliation for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2010;139(5):1205–10. https://doi.org/10.1016/j.jtcvs.2009.11.029.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gibbs JL, Wren C, Watterson KG, Hunter S, Hamilton JR. Stenting of the arterial duct combined with banding of the pulmonary arteries and atrial septectomy or septostomy: a new approach to palliation for the hypoplastic left heart syndrome. Br Heart J. 1993;69(6):551–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schranz D, Bauer A, Reich B, Steinbrenner B, Recla S, Schmidt D, et al. Fifteen-year single center experience with the “Giessen hybrid” approach for hypoplastic left heart and variants: current strategies and outcomes. Pediatr Cardiol. 2015;36(2):365–73. https://doi.org/10.1007/s00246-014-1015-2.

    Article  PubMed  Google Scholar 

  55. Galantowicz M, Cheatham JP, Phillips A, Cua CL, Hoffman TM, Hill SL, et al. Hybrid approach for hypoplastic left heart syndrome: intermediate results after the learning curve. Ann Thorac Surg. 2008;85(6):2063–70; discussion 70–1. https://doi.org/10.1016/j.athoracsur.2008.02.009.

    Article  PubMed  Google Scholar 

  56. Baba K, Honjo O, Chaturvedi R, Lee KJ, Van Arsdell G, Caldarone CA, et al. “Reverse Blalock-Taussig shunt”: application in single ventricle hybrid palliation. J Thorac Cardiovasc Surg. 2013;146(2):352–7. https://doi.org/10.1016/j.jtcvs.2012.11.029.

    Article  PubMed  Google Scholar 

  57. Gelehrter S, Fifer CG, Armstrong A, Hirsch J, Gajarski R. Outcomes of hypoplastic left heart syndrome in low-birth-weight patients. Pediatr Cardiol. 2011;32(8):1175–81. https://doi.org/10.1007/s00246-011-0053-2.

    Article  PubMed  Google Scholar 

  58. Cua CL, McConnell PI, Meza JM, Hill KD, Zhang S, Hersey D, et al. Hybrid palliation: outcomes after the comprehensive stage 2 procedure. Ann Thorac Surg. 2018;105(5):1455–60. https://doi.org/10.1016/j.athoracsur.2017.11.046.

    Article  PubMed  Google Scholar 

  59. Hirsch-Romano JC, Bove EL, Si M-S, Ohye RG. Modified hemi-Fontan procedure. Oper Tech Thorac Cardiovasc Surg. 2013;18(2):117–23. https://doi.org/10.1053/j.optechstcvs.2013.08.001.

    Article  Google Scholar 

  60. Hirsch JC, Devaney EJ, Ohye RG, Bove EL. Hypoplastic left heart syndrome. In: Mavroudis C, Backer CL, editors. Pediatric cardiac surgery. 4th ed. Chichester: Wiley-Blackwell; 2013.

    Google Scholar 

  61. Lamberti JJ, Spicer RL, Waldman JD, Grehl TM, Thomson D, George L, et al. The bidirectional cavopulmonary shunt. J Thorac Cardiovasc Surg. 1990;100(1):22–9; discussion 9–30.

    CAS  PubMed  Google Scholar 

  62. Murthy KS, Coelho R, Naik SK, Punnoose A, Thomas W, Cherian KM. Novel techniques of bidirectional Glenn shunt without cardiopulmonary bypass. Ann Thorac Surg. 1999;67(6):1771–4. https://doi.org/10.1016/s0003-4975(99)00278-7.

    Article  CAS  PubMed  Google Scholar 

  63. Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2003;126(4):1040–7. https://doi.org/10.1016/s0022-5223(03)00698-6.

    Article  PubMed  Google Scholar 

  64. Itatani K, Miyaji K, Tomoyasu T, Nakahata Y, Ohara K, Takamoto S, et al. Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann Thorac Surg. 2009;88(2):565–72; discussion 72–3. https://doi.org/10.1016/j.athoracsur.2009.04.109.

    Article  PubMed  Google Scholar 

  65. Sharma S, Goudy S, Walker P, Panchal S, Ensley A, Kanter K, et al. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J Am Coll Cardiol. 1996;27(5):1264–9. https://doi.org/10.1016/0735-1097(95)00598-6.

    Article  CAS  PubMed  Google Scholar 

  66. Jonas R. Three-stage management of single ventricle. In: Jonas R, editor. Comprehensive surgical management of congenital heart disease. 2nd ed. Boca Raton: CRC Press; 2014.

    Google Scholar 

  67. Jonas RA. The intra/extracardiac conduit fenestrated fontan. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14(1):11–8. https://doi.org/10.1053/j.pcsu.2011.01.010.

    Article  PubMed  Google Scholar 

  68. Bove EL. Current status of staged reconstruction for hypoplastic left heart syndrome. Pediatr Cardiol. 1998;19(4):308–15. https://doi.org/10.1007/s002469900314.

    Article  CAS  PubMed  Google Scholar 

  69. Hirsch JC, Ohye RG, Devaney EJ, Goldberg CS, Bove EL. The lateral tunnel Fontan procedure for hypoplastic left heart syndrome: results of 100 consecutive patients. Pediatr Cardiol. 2007;28(6):426–32. https://doi.org/10.1007/s00246-007-9002-5.

    Article  CAS  PubMed  Google Scholar 

  70. Hosein RBM, Clarke AJB, McGuirk SP, Griselli M, Stumper O, De Giovanni JV, et al. Factors influencing early and late outcome following the Fontan procedure in the current era. The ‘two commandments’? Eur J Cardiothorac Surg. 2007;31(3):344–53. https://doi.org/10.1016/j.ejcts.2006.11.043.

    Article  PubMed  Google Scholar 

  71. Petrossian E, Reddy VM, Collins KK, Culbertson CB, MacDonald MJ, Lamberti JJ, et al. The extracardiac conduit Fontan operation using minimal approach extracorporeal circulation: early and midterm outcomes. J Thorac Cardiovasc Surg. 2006;132(5):1054–63. https://doi.org/10.1016/j.jtcvs.2006.05.066.

    Article  PubMed  Google Scholar 

  72. Hirsch JC, Goldberg C, Bove EL, Salehian S, Lee T, Ohye RG, et al. Fontan operation in the current era: a 15-year single institution experience. Ann Surg. 2008;248(3):402–10. https://doi.org/10.1097/SLA.0b013e3181858286.

    Article  PubMed  Google Scholar 

  73. Pundi KN, Johnson JN, Dearani JA, Pundi KN, Li Z, Hinck CA, et al. 40-year follow-up after the Fontan operation: long-term outcomes of 1,052 patients. J Am Coll Cardiol. 2015;66(15):1700–10. https://doi.org/10.1016/j.jacc.2015.07.065.

    Article  PubMed  Google Scholar 

  74. d’Udekem Y, Iyengar AJ, Galati JC, Forsdick V, Weintraub RG, Wheaton GR, et al. Redefining expectations of long-term survival after the Fontan procedure: twenty-five years of follow-up from the entire population of Australia and New Zealand. Circulation. 2014;130(11 Suppl 1):S32–8. https://doi.org/10.1161/CIRCULATIONAHA.113.007764.

    Article  PubMed  Google Scholar 

  75. Gentles TL, Mayer JE Jr, Gauvreau K, Newburger JW, Lock JE, Kupferschmid JP, et al. Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg. 1997;114(3):376–91.

    Article  CAS  PubMed  Google Scholar 

  76. Stamm C, Friehs I, Mayer JE, Zurakowski D, Triedman JK, Moran AM, et al. Long-term results of the lateral tunnel Fontan operation. J Thorac Cardiovasc Surg. 2001;121(1):28–41. https://doi.org/10.1067/mtc.2001.111422.

    Article  CAS  PubMed  Google Scholar 

  77. Tweddell JS, Nersesian M, Mussatto KA, Nugent M, Simpson P, Mitchell ME, et al. Fontan palliation in the modern era: factors impacting mortality and morbidity. Ann Thorac Surg. 2009;88(4):1291–9. https://doi.org/10.1016/j.athoracsur.2009.05.076.

    Article  PubMed  Google Scholar 

  78. Brown JW, Ruzmetov M, Deschner BW, Rodefeld MD, Turrentine MW. Lateral tunnel Fontan in the current era: is it still a good option? Ann Thorac Surg. 2010;89(2):556–62; discussion 62–3. https://doi.org/10.1016/j.athoracsur.2009.10.050.

    Article  PubMed  Google Scholar 

  79. Rogers LS, Glatz AC, Ravishankar C, Spray TL, Nicolson SC, Rychik J, et al. 18 years of the Fontan operation at a single institution: results from 771 consecutive patients. J Am Coll Cardiol. 2012;60(11):1018–25. https://doi.org/10.1016/j.jacc.2012.05.010.

    Article  PubMed  Google Scholar 

  80. Stewart RD, Pasquali SK, Jacobs JP, Benjamin DK, Jaggers J, Cheng J, et al. Contemporary Fontan operation: association between early outcome and type of cavopulmonary connection. Ann Thorac Surg. 2012;93(4):1254–60; discussion 61. https://doi.org/10.1016/j.athoracsur.2012.01.060.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ono M, Kasnar-Samprec J, Hager A, Cleuziou J, Burri M, Langenbach C, et al. Clinical outcome following total cavopulmonary connection: a 20-year single-centre experience. Eur J Cardiothorac Surg. 2016; https://doi.org/10.1093/ejcts/ezw091.

  82. Ravishankar C, Gerstenberger E, Sleeper LA, Atz AM, Affolter JT, Bradley TJ, et al. Factors affecting Fontan length of stay: results from the single ventricle reconstruction trial. J Thorac Cardiovasc Surg. 2016;151(3):669–75 e1. https://doi.org/10.1016/j.jtcvs.2015.09.061.

    Article  PubMed  Google Scholar 

  83. Burke RP, Jacobs JP, Ashraf MH, Aldousany A, Chang AC. Extracardiac Fontan operation without cardiopulmonary bypass. Ann Thorac Surg. 1997;63(4):1175–7. https://doi.org/10.1016/s0003-4975(97)00191-4.

    Article  CAS  PubMed  Google Scholar 

  84. McElhinney DB, Petrossian E, Reddy VM, Hanley FL. Extracardiac conduit fontan procedure without cardiopulmonary bypass. Ann Thorac Surg. 1998;66(5):1826–8. https://doi.org/10.1016/s0003-4975(98)00928-x.

    Article  CAS  PubMed  Google Scholar 

  85. Backer CL, Deal BJ, Kaushal S, Russell HM, Tsao S, Mavroudis C. Extracardiac versus intra-atrial lateral tunnel fontan: extracardiac is better. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14(1):4–10. https://doi.org/10.1053/j.pcsu.2011.01.019.

    Article  PubMed  Google Scholar 

  86. Bradley SM. Extracardiac conduit fontan procedure. Oper Tech Thorac Cardiovasc Surg. 2006;11(2):123–40. https://doi.org/10.1053/j.optechstcvs.2006.03.005.

    Article  Google Scholar 

  87. Thompson LD, Petrossian E, McElhinney DB, Abrikosova NA, Moore P, Reddy VM, et al. Is it necessary to routinely fenestrate an extracardiac Fontan? J Am Coll Cardiol. 1999;34(2):539–44. https://doi.org/10.1016/s0735-1097(99)00228-4.

    Article  CAS  PubMed  Google Scholar 

  88. Pretre R, Dave H, Mueller C, Kassem K, Kretschmar O. A new method to fenestrate the Fontan circulation. J Thorac Cardiovasc Surg. 2012;144(1):273–5. https://doi.org/10.1016/j.jtcvs.2011.12.057.

    Article  PubMed  Google Scholar 

  89. Michel-Behnke I, Luedemann M, Bauer J, Hagel KJ, Akintuerk H, Schranz D. Fenestration in extracardiac conduits in children after modified Fontan operation by implantation of stent grafts. Pediatr Cardiol. 2005;26(1):93–6. https://doi.org/10.1007/s00246-004-0693-6.

    Article  CAS  PubMed  Google Scholar 

  90. Amin Z, Danford DA, Pedra CA. A new Amplatzer device to maintain patency of Fontan fenestrations and atrial septal defects. Catheter Cardiovasc Interv. 2002;57(2):246–51. https://doi.org/10.1002/ccd.10308.

    Article  PubMed  Google Scholar 

  91. Salazar JD, Zafar F, Siddiqui K, Coleman RD, Morales DL, Heinle JS, et al. Fenestration during Fontan palliation: now the exception instead of the rule. J Thorac Cardiovasc Surg. 2010;140(1):129–36. https://doi.org/10.1016/j.jtcvs.2010.03.013.

    Article  PubMed  Google Scholar 

  92. Booth KL, Roth SJ, Thiagarajan RR, Almodovar MC, del Nido PJ, Laussen PC. Extracorporeal membrane oxygenation support of the Fontan and bidirectional Glenn circulations. Ann Thorac Surg. 2004;77(4):1341–8. https://doi.org/10.1016/j.athoracsur.2003.09.042.

    Article  PubMed  Google Scholar 

  93. Rood KL, Teele SA, Barrett CS, Salvin JW, Rycus PT, Fynn-Thompson F, et al. Extracorporeal membrane oxygenation support after the Fontan operation. J Thorac Cardiovasc Surg. 2011;142(3):504–10. https://doi.org/10.1016/j.jtcvs.2010.11.050.

    Article  PubMed  Google Scholar 

  94. Friedland-Little JM, Aiyagari R, Yu S, Donohue JE, Hirsch-Romano JC. Survival through staged palliation: fate of infants supported by extracorporeal membrane oxygenation after the Norwood operation. Ann Thorac Surg. 2014;97(2):659–65. https://doi.org/10.1016/j.athoracsur.2013.10.066.

    Article  PubMed  Google Scholar 

  95. Rodefeld MD, Frankel SH, Giridharan GA. Cavopulmonary assist: (em)powering the univentricular fontan circulation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14(1):45–54. https://doi.org/10.1053/j.pcsu.2011.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sinha P, Deutsch N, Ratnayaka K, Lederman R, He D, Nuszkowski M, et al. Effect of mechanical assistance of the systemic ventricle in single ventricle circulation with cavopulmonary connection. J Thorac Cardiovasc Surg. 2014;147(4):1271–5. https://doi.org/10.1016/j.jtcvs.2013.12.018.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Halaweish I, Ohye RG, Si MS. Berlin heart ventricular assist device as a long-term bridge to transplantation in a Fontan patient with failing single ventricle. Pediatr Transplant. 2015;19(8):E193–5. https://doi.org/10.1111/petr.12607.

    Article  CAS  PubMed  Google Scholar 

  98. VanderPluym CJ, Rebeyka IM, Ross DB, Buchholz H. The use of ventricular assist devices in pediatric patients with univentricular hearts. J Thorac Cardiovasc Surg. 2011;141(2):588–90. https://doi.org/10.1016/j.jtcvs.2010.06.038.

    Article  PubMed  Google Scholar 

  99. Almond CS, Thiagarajan RR, Piercey GE, Gauvreau K, Blume ED, Bastardi HJ, et al. Waiting list mortality among children listed for heart transplantation in the United States. Circulation. 2009;119(5):717–27. https://doi.org/10.1161/CIRCULATIONAHA.108.815712.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sassalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sassalos, P., Ohye, R.G. (2019). Surgical Management of Hypoplastic Left Heart Syndrome. In: Mastropietro, C., Valentine, K. (eds) Pediatric Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-96499-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96499-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96498-0

  • Online ISBN: 978-3-319-96499-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics