Skip to main content

Pediatric Cardiac Transplantation and Mechanical Assist Devices

  • Chapter
  • First Online:
  • 1549 Accesses

Abstract

The number of children listed for heart transplantation and the number receiving transplants have increased. Survival after heart transplant has improved over the eras with most of this improvement being in the perioperative period. Advancement in mechanical circulatory support has increased options for bridging infants and children to successful transplantation. Challenges remain in anticoagulation of these devices and developing suitable mechanical circulatory support for infants and complex congenital heart disease. With improved short-term survival after heart transplantation, increased attention can be paid to morbidity that affects long-term outcome. Consensus in standard of care immunosuppression guidelines has opened the door to multicenter pediatric heart transplant studies. Progress has been made in the pediatric heart transplant community in understanding practice variation in an effort to study the effect of these variations on outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Colvin M, Smith JM, Skeans MA, et al. OPTN/SRTR 2015 annual data report: heart. Am J Transplant. 2017;17(Suppl 1):286–356.

    Article  PubMed  Google Scholar 

  2. Rossano JW, Cherikh WS, Chambers DC, et al. The registry of the International Society for Heart and Lung Transplantation: twentieth pediatric heart transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36:1060–69.

    Google Scholar 

  3. Rossano JW, Kim JJ, Decker JA, et al. Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: a population-based study. J Card Fail. 2012;18:459–70.

    Article  PubMed  Google Scholar 

  4. Shamszad P, Hall M, Rossano JW, et al. Characteristics and outcomes of heart failure-related intensive care unit admissions in children with cardiomyopathy. J Card Fail. 2013;19:672–7.

    Article  PubMed  Google Scholar 

  5. Wittlieb-Weber CA, Lin KY, Zaoutis TE, et al. Pediatric versus adult cardiomyopathy and heart failure-related hospitalizations: a value-based analysis. J Card Fail. 2015;21:76–82.

    Article  PubMed  Google Scholar 

  6. van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.

    Article  PubMed  Google Scholar 

  7. Newburger JW, Sleeper LA, Gaynor JW, et al. Transplant-free survival and interventions at 6 years in the SVR trial. Circulation. 2018;137:2246–53.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zafar F, Castleberry C, Khan MS, et al. Pediatric heart transplant waiting list mortality in the era of ventricular assist devices. J Heart Lung Transplant. 2015;34:82–8.

    Article  PubMed  Google Scholar 

  9. Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080–86.

    Google Scholar 

  10. Adachi I, Fraser CD, Jr. Berlin heart EXCOR Food and Drug Administration investigational device exemption trial. Semin Thorac Cardiovasc Surg. 2013;25:100–6.

    Google Scholar 

  11. Strueber M, Larbalestier R, Jansz P, et al. Results of the post-market registry to evaluate the HeartWare left ventricular assist system (ReVOLVE). J Heart Lung Transplant. 2014;33:486–91.

    Article  PubMed  Google Scholar 

  12. Conway J, Al-Aklabi M, Granoski D, et al. Supporting pediatric patients with short-term continuous-flow devices. J Heart Lung Transplant. 2016;35:603–9.

    Article  PubMed  Google Scholar 

  13. Gerrah R, Charette K, Chen JM. The first successful use of the Levitronix PediMag ventricular support device as a biventricular bridge to transplant in an infant. J Thorac Cardiovasc Surg. 2011;142:1282–3.

    Article  PubMed  Google Scholar 

  14. Maat AP, van Thiel RJ, Dalinghaus M, Bogers AJ. Connecting the Centrimag Levitronix pump to berlin heart Excor cannulae; a new approach to bridge to bridge. J Heart Lung Transplant. 2008;27:112–5.

    Article  PubMed  Google Scholar 

  15. Ibrahim N. FDA letter to Medtronic, Inc. re: Heartware HVAD system. (2017). https://www.accessdata.fda.gov/cdrh_docs/pdf10/P100047S090a.pdf

  16. Adachi I, Guzman-Pruneda FA, Jeewa A, Fraser CD Jr, McKenzie ED. A modified implantation technique of the HeartWare ventricular assist device for pediatric patients. J Heart Lung Transplant. 2015;34:134–6.

    Article  PubMed  Google Scholar 

  17. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  CAS  PubMed  Google Scholar 

  18. Mehra MR, Naka Y, Uriel N, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376:440–50.

    Article  PubMed  Google Scholar 

  19. Netuka I, Sood P, Pya Y, et al. Fully magnetically levitated left ventricular assist system for treating advanced HF: a multicenter study. J Am Coll Cardiol. 2015;66:2579–89.

    Article  PubMed  Google Scholar 

  20. Lorts A, Zafar F, Adachi I, Morales DL. Mechanical assist devices in neonates and infants. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2014;17:91–5.

    Article  PubMed  Google Scholar 

  21. Schranz D, Rupp S, Muller M, et al. Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J Heart Lung Transplant. 2013;32:475–81.

    Article  PubMed  Google Scholar 

  22. Barbaro RP, Paden ML, Guner YS, et al. Pediatric extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:456–63.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steingrub JS, Tidswell M, Higgins TL. Hemodynamic consequences of heart-lung interactions. J Intensive Care Med. 2003;18:92–9.

    Article  PubMed  Google Scholar 

  24. Pietra BA, Kantor PF, Bartlett HL, et al. Early predictors of survival to and after heart transplantation in children with dilated cardiomyopathy. Circulation. 2012;126:1079–86.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Auerbach SR, Richmond ME, Chen JM, et al. Multiple risk factors before pediatric cardiac transplantation are associated with increased graft loss. Pediatr Cardiol. 2012;33:49–54.

    Article  PubMed  Google Scholar 

  26. Zafar F, Jefferies JL, Tjossem CJ, et al. Biventricular Berlin Heart EXCOR pediatric use across the United States. Ann Thorac Surg. 2015;99:1328–34.

    Article  PubMed  Google Scholar 

  27. Nassar MS, Hasan A, Chila T, et al. Comparison of paracorporeal and continuous flow ventricular assist devices in children: preliminary results. Eur J Cardiothorac Surg. 2017;51:709–14.

    Article  PubMed  Google Scholar 

  28. Chen JM, Richmond ME, Charette K, et al. A decade of pediatric mechanical circulatory support before and after cardiac transplantation. J Thorac Cardiovasc Surg. 2012;143:344–51.

    Article  PubMed  Google Scholar 

  29. Char DS, Lee SS, Ikoku AA, Rosenthal D, Magnus D. Can destination therapy be implemented in children with heart failure? A study of provider perceptions. Pediatr Transplant. 2016;20:819–24.

    Article  PubMed  Google Scholar 

  30. Villa CR, Lorts A. Cardiac destination therapy in pediatrics – are we there yet? Pediatr Transplant. 2016;20:738–9.

    Article  PubMed  Google Scholar 

  31. Weinstein S, Bello R, Pizarro C, et al. The use of the Berlin Heart EXCOR in patients with functional single ventricle. J Thorac Cardiovasc Surg. 2014;147:697–704; discussion 704–5.

    Article  PubMed  Google Scholar 

  32. Morales DL, Adachi I, Heinle JS, Fraser CD Jr. A new era: use of an intracorporeal systemic ventricular assist device to support a patient with a failing Fontan circulation. J Thorac Cardiovasc Surg. 2011;142:e138–40.

    Article  PubMed  Google Scholar 

  33. Steiner ME, Bomgaars LR, Massicotte MP, Berlin Heart EPVADIDEsi. Antithrombotic therapy in a prospective trial of a pediatric ventricular assist device. ASAIO J. 2016;62:719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young G, Male C, van Ommen CH. Anticoagulation in children: making the most of little patients and little evidence. Blood Cells Mol Dis. 2017;67:48–53.

    Article  PubMed  Google Scholar 

  35. Newall F, Johnston L, Ignjatovic V, Monagle P. Unfractionated heparin therapy in infants and children. Pediatrics. 2009;123:e510–8.

    Article  PubMed  Google Scholar 

  36. VanderPluym C. Alternative anticoagulation strategies for Berlin heart EXCOR. Finding solutions from Failure. Berlin Heart EXCOR user training, October 22–24. Orlando: Nemours Children’s Hospital; 2017.

    Google Scholar 

  37. Pieri M, Agracheva N, Bonaveglio E, et al. Bivalirudin versus heparin as an anticoagulant during extracorporeal membrane oxygenation: a case-control study. J Cardiothorac Vasc Anesth. 2013;27:30–4.

    Article  CAS  PubMed  Google Scholar 

  38. Gates R, Yost P, Parker B. The use of bivalirudin for cardiopulmonary bypass anticoagulation in pediatric heparin-induced thrombocytopenia patients. Artif Organs. 2010;34:667–9.

    PubMed  Google Scholar 

  39. Dyke CM, Smedira NG, Koster A, et al. A comparison of bivalirudin to heparin with protamine reversal in patients undergoing cardiac surgery with cardiopulmonary bypass: the EVOLUTION-ON study. J Thorac Cardiovasc Surg. 2006;131:533–9.

    Article  CAS  PubMed  Google Scholar 

  40. Dragomer D, Chalfant A, Biniwale R, Reemtsen B, Federman M. Novel techniques in the use of bivalirudin for cardiopulmonary bypass anticoagulation in a child with heparin-induced thrombocytopenia. Perfusion. 2011;26:516–8.

    Article  CAS  PubMed  Google Scholar 

  41. Rutledge JM, Chakravarti S, Massicotte MP, Buchholz H, Ross DB, Joashi U. Antithrombotic strategies in children receiving long-term Berlin Heart EXCOR ventricular assist device therapy. J Heart Lung Transplant. 2013;32:569–73.

    Article  PubMed  Google Scholar 

  42. Castleberry C, Pruitt E, Ameduri R, et al. Risk stratification to determine the impact of induction therapy on survival, rejection and adverse events after pediatric heart transplant: a multi-institutional study. J Heart Lung Transplant. 2017;4:458–66.

    Google Scholar 

  43. Gajarski RJ, Blume ED, Urschel S, et al. Infection and malignancy after pediatric heart transplantation: the role of induction therapy. J Heart Lung Transplant. 2011;30:299–308.

    Article  PubMed  Google Scholar 

  44. Dionigi B, Razzouk AJ, Hasaniya NW, Chinnock RE, Bailey LL. Late outcomes of pediatric heart transplantation are independent of pre-transplant diagnosis and prior cardiac surgical intervention. J Heart Lung Transplant. 2008;27:1090–5.

    Article  PubMed  Google Scholar 

  45. Leonard H, Hornung T, Parry G, Dark JH. Pediatric cardiac transplant: results using a steroid-free maintenance regimen. Pediatr Transplant. 2003;7:59–63.

    Article  CAS  PubMed  Google Scholar 

  46. Smith RR, Wray J, Khaghani A, Yacoub M. Ten year survival after paediatric heart transplantation: a single centre experience. Eur J Cardiothorac Surg. 2005;27:790–4.

    Article  PubMed  Google Scholar 

  47. Rosenthal DN, Chin C, Nishimura K, et al. Identifying cardiac transplant rejection in children: diagnostic utility of echocardiography, right heart catheterization and endomyocardial biopsy data. J Heart Lung Transplant. 2004;23:323–9.

    Article  PubMed  Google Scholar 

  48. Auerbach SR, Gralla J, Campbell DN, Miyamoto SD, Pietra BA. Steroid avoidance in pediatric heart transplantation results in excellent graft survival. Transplantation. 2014;97:474–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chinnock TJ, Shankel T, Deming D, et al. Calcineurin inhibitor minimization using sirolimus leads to improved renal function in pediatric heart transplant recipients. Pediatr Transplant. 2011;15:746–9.

    Article  CAS  PubMed  Google Scholar 

  50. Matthews K, Gossett J, Kappelle PV, Jellen G, Pahl E. Indications, tolerance and complications of a sirolimus and calcineurin inhibitor immunosuppression regimen: intermediate experience in pediatric heart transplantation recipients. Pediatr Transplant. 2010;14:402–8.

    Article  CAS  PubMed  Google Scholar 

  51. Behnke-Hall K, Bauer J, Thul J, et al. Renal function in children with heart transplantation after switching to CNI-free immunosuppression with everolimus. Pediatr Transplant. 2011;15:784–9.

    Article  CAS  PubMed  Google Scholar 

  52. Asante-Korang A, Carapellucci J, Krasnopero D, Doyle A, Brown B, Amankwah E. Conversion from calcineurin inhibitors to mTOR inhibitors as primary immunosuppressive drugs in pediatric heart transplantation. Clin Transpl. 2017;31:e13054.

    Article  Google Scholar 

  53. Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349:847–58.

    Article  CAS  PubMed  Google Scholar 

  54. Keogh A, Richardson M, Ruygrok P, et al. Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation. 2004;110:2694–700.

    Article  CAS  PubMed  Google Scholar 

  55. Zuckerman WA, Zeevi A, Mason KL, et al. Study rationale, design and pre-transplant alloantibody status: a first report of clinical trials in organ transplantation in children-04 (CTOTC-04) in pediatric heart transplantation. Am J Transplant. 2018;18(9):2135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dipchand AI, Edwards LB, Kucheryavaya AY, et al. The registry of the International Society for Heart and Lung Transplantation: seventeenth official pediatric heart transplantation report – 2014; focus theme: retransplantation. J Heart Lung Transplant. 2014;33:985–95.

    Article  PubMed  Google Scholar 

  57. Conway J, Manlhiot C, Kirk R, Edwards LB, McCrindle BW, Dipchand AI. Mortality and morbidity after retransplantation after primary heart transplant in childhood: an analysis from the registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2014;33:241–51.

    Article  PubMed  Google Scholar 

  58. Mahle WT, Vincent RN, Kanter KR. Cardiac retransplantation in childhood: analysis of data from the united network for organ sharing. J Thorac Cardiovasc Surg. 2005;130:542–6.

    Article  PubMed  Google Scholar 

  59. Chin C, Naftel D, Pahl E, et al. Cardiac re-transplantation in pediatrics: a multi-institutional study. J Heart Lung Transplant. 2006;25:1420–4.

    Article  PubMed  Google Scholar 

  60. Daly KP, Marshall AC, Vincent JA, et al. Endomyocardial biopsy and selective coronary angiography are low-risk procedures in pediatric heart transplant recipients: results of a multicenter experience. J Heart Lung Transplant. 2012;31:398–409.

    Article  PubMed  Google Scholar 

  61. Zhorne D, Petit CJ, Ing FF, et al. A 25-year experience of endomyocardial biopsy safety in infants. Catheter Cardiovasc Interv. 2013;82:797–801.

    Article  PubMed  Google Scholar 

  62. Stendahl G, Bobay K, Berger S, Zangwill S. Organizational structure and processes in pediatric heart transplantation: a survey of practices. Pediatr Transplant. 2012;16:257–64.

    Article  PubMed  Google Scholar 

  63. Godown J, Harris MT, Burger J, Dodd DA. Variation in the use of surveillance endomyocardial biopsy among pediatric heart transplant centers over time. Pediatr Transplant. 2015;19:612–7.

    Article  PubMed  Google Scholar 

  64. Castleberry C, Ziniel S, Almond C, et al. Clinical practice patterns are relatively uniform between pediatric heart transplant centers: a survey-based assessment. Pediatr Transplant. 2017;21:e13013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline M. Lamour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lehoux, J.M., Beddows, K.D., Lamour, J.M. (2019). Pediatric Cardiac Transplantation and Mechanical Assist Devices. In: Mastropietro, C., Valentine, K. (eds) Pediatric Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-96499-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96499-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96498-0

  • Online ISBN: 978-3-319-96499-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics