Skip to main content

Ventilator Management for Pediatric Acute Respiratory Distress Syndrome

  • Chapter
  • First Online:
  • 1663 Accesses

Abstract

Children with the most severe form of respiratory failure, pediatric acute respiratory distress syndrome (PARDS), account for approximately 1–4% of PICU admissions. Research in the care of these patients, expert opinion, and data extrapolated from adult studies have led to changes in clinical management over the last 20 years. Despite the paucity of definitive pediatric-specific data to guide clinical management, the overall mortality in PARDS has improved over time from an estimated 40% mortality before 2000 to approximately 18% since 2010. This chapter outlines the pathogenesis of ARDS, definition of PARDS, general management strategies, and clinical controversies in the management of those with PARDS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–49.

    Article  CAS  PubMed  Google Scholar 

  2. Flori HR, Glidden DV, Rutherford GW, Matthay MA. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med. 2005;171(9):995–1001.

    Article  PubMed  Google Scholar 

  3. Khemani RG, Smith LS, Zimmerman JJ, Erickson S, Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S23–40.

    Article  PubMed  Google Scholar 

  4. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–24.

    Article  CAS  PubMed  Google Scholar 

  5. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–82.

    Article  PubMed  Google Scholar 

  6. Essouri S, Carroll C, Pediatric Acute Lung Injury Consensus Conference Group. Noninvasive support and ventilation for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S102–10.

    Article  PubMed  Google Scholar 

  7. Yanez LJ, Yunge M, Emilfork M, Lapadula M, Alcantara A, Fernandez C, et al. A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2008;9(5):484–9.

    Article  PubMed  Google Scholar 

  8. Fioretto JR, Ribeiro CF, Carpi MF, Bonatto RC, Moraes MA, Fioretto EB, et al. Comparison between noninvasive mechanical ventilation and standard oxygen therapy in children up to 3 years old with respiratory failure after extubation: a pilot prospective randomized clinical study. Pediatr Crit Care Med. 2015;16(2):124–30.

    Article  PubMed  Google Scholar 

  9. Rimensberger PC, Cheifetz IM, Pediatric Acute Lung Injury Consensus Conference Group. Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S51–60.

    Article  PubMed  Google Scholar 

  10. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  11. Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, et al. Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med. 2007;8(4):317–23.

    PubMed  Google Scholar 

  12. Khemani RG, Conti D, Alonzo TA, Bart RD 3rd, Newth CJ. Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med. 2009;35(8):1428–37.

    Article  PubMed  Google Scholar 

  13. Zhu YF, Xu F, Lu XL, Wang Y, Chen JL, Chao JX, et al. Mortality and morbidity of acute hypoxemic respiratory failure and acute respiratory distress syndrome in infants and young children. Chin Med J. 2012;125(13):2265–71.

    PubMed  Google Scholar 

  14. Martin DC, Richards GN. Predicted body weight relationships for protective ventilation – unisex proposals from pre-term through to adult. BMC Pulm Med. 2017;17(1):85.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med. 1994;149(5):1327–34.

    Article  CAS  PubMed  Google Scholar 

  16. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–36.

    Article  PubMed  Google Scholar 

  17. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–45.

    Article  CAS  PubMed  Google Scholar 

  18. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646–55.

    Article  CAS  PubMed  Google Scholar 

  19. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73.

    Article  CAS  PubMed  Google Scholar 

  20. Phoenix SI, Paravastu S, Columb M, Vincent JL, Nirmalan M. Does a higher positive end expiratory pressure decrease mortality in acute respiratory distress syndrome? A systematic review and meta-analysis. Anesthesiology. 2009;110(5):1098–105.

    Article  PubMed  Google Scholar 

  21. Khemani RG, Parvathaneni K, Yehya N, Bhalla AK, Thomas NJ, CJL N. PEEP Lower Than the ARDS Network Protocol is Associated with Higher Pediatric ARDS Mortality. Am J Respir Crit Care Med. 2018;198:77.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.

    Article  CAS  PubMed  Google Scholar 

  23. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805.

    Article  CAS  PubMed  Google Scholar 

  24. Bateman ST, Borasino S, Asaro LA, Cheifetz IM, Diane S, Wypij D, et al. Early high-frequency oscillatory ventilation in pediatric acute respiratory failure. A propensity score analysis. Am J Respir Crit Care Med. 2016;193(5):495–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Arnold JH, Truog RD, Thompson JE, Fackler JC. High-frequency oscillatory ventilation in pediatric respiratory failure. Crit Care Med. 1993;21(2):272–8.

    Article  CAS  PubMed  Google Scholar 

  26. Rosenberg RB, Broner CW, Peters KJ, Anglin DL. High-frequency ventilation for acute pediatric respiratory failure. Chest. 1993;104(4):1216–21.

    Article  CAS  PubMed  Google Scholar 

  27. Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med. 1994;22(10):1530–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, et al. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ. 2010;340:c2327.

    Article  PubMed  Google Scholar 

  29. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–13.

    Article  CAS  PubMed  Google Scholar 

  30. Pelosi P, D’Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J. 2003;42(Suppl):48s–56s.

    Google Scholar 

  31. Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002;96(4):795–802.

    Article  PubMed  Google Scholar 

  32. Cruces P, Donoso A, Valenzuela J, Diaz F. Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study. Pediatr Pulmonol. 2013;48(11):1135–43.

    Article  PubMed  Google Scholar 

  33. Povoa P, Almeida E, Fernandes A, Mealha R, Moreira P, Sabino H. Evaluation of a recruitment maneuver with positive inspiratory pressure and high PEEP in patients with severe ARDS. Acta Anaesthesiol Scand. 2004;48(3):287–93.

    Article  CAS  PubMed  Google Scholar 

  34. Badet M, Bayle F, Richard JC, Guerin C. Comparison of optimal positive end-expiratory pressure and recruitment maneuvers during lung-protective mechanical ventilation in patients with acute lung injury/acute respiratory distress syndrome. Respir Care. 2009;54(7):847–54.

    Article  PubMed  Google Scholar 

  35. Halbertsma FJ, van der Hoeven JG. Lung recruitment during mechanical positive pressure ventilation in the PICU: what can be learned from the literature? Anaesthesia. 2005;60(8):779–90.

    Article  CAS  PubMed  Google Scholar 

  36. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  CAS  PubMed  Google Scholar 

  37. Kornecki A, Frndova H, Coates AL, Shemie SD. 4A randomized trial of prolonged prone positioning in children with acute respiratory failure. Chest. 2001;119(1):211–8.

    Article  CAS  PubMed  Google Scholar 

  38. Bruno F, Piva JP, Garcia PC, Einloft P, Fiori R, Barreto SM. Short-term effects of prone positioning on the oxygenation of pediatric patients submitted to mechanical ventilation. J Pediatr (Rio J). 2001;77(5):361–8.

    CAS  Google Scholar 

  39. Lopez-Herce Cid J, Garcia Sanchez E, Garcia Sanz C, Ruperez Lucas M, Alcaraz Romero A, Carrillo AA. Effects of prone position, inhaled nitric oxide and surfactant in children with hypoxemic pulmonary disease. An Pediatr (Barc). 2003;58(2):106–14.

    Article  CAS  Google Scholar 

  40. Casado-Flores J, Martinez de Azagra A, Ruiz-Lopez MJ, Ruiz M, Serrano A. Pediatric ARDS: effect of supine-prone postural changes on oxygenation. Intensive Care Med. 2002;28(12):1792–6.

    Article  PubMed  Google Scholar 

  41. Curley MA, Hibberd PL, Fineman LD, Wypij D, Shih MC, Thompson JE, et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA. 2005;294(2):229–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sud S, Sud M, Friedrich JO, Adhikari NK. Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ. 2008;178(9):1153–61.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36(4):585–99.

    Article  PubMed  Google Scholar 

  44. Tamburro RF, Kneyber MC, Pediatric Acute Lung Injury Consensus Conference Group. Pulmonary specific ancillary treatment for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S61–72.

    Article  PubMed  Google Scholar 

  45. Day RW, Allen EM, Witte MK. A randomized, controlled study of the 1-hour and 24-hour effects of inhaled nitric oxide therapy in children with acute hypoxemic respiratory failure. Chest. 1997;112(5):1324–31.

    Article  CAS  PubMed  Google Scholar 

  46. Dobyns EL, Cornfield DN, Anas NG, Fortenberry JD, Tasker RC, Lynch A, et al. Multicenter randomized controlled trial of the effects of inhaled nitric oxide therapy on gas exchange in children with acute hypoxemic respiratory failure. J Pediatr. 1999;134(4):406–12.

    Article  CAS  PubMed  Google Scholar 

  47. Afshari A, Brok J, Moller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesth Analg. 2011;112(6):1411–21.

    Article  PubMed  Google Scholar 

  48. Macrae DJ, Field D, Mercier JC, Moller J, Stiris T, Biban P, et al. Inhaled nitric oxide therapy in neonates and children: reaching a European consensus. Intensive Care Med. 2004;30(3):372–80.

    Article  PubMed  Google Scholar 

  49. Luchetti M, Casiraghi G, Valsecchi R, Galassini E, Marraro G. Porcine-derived surfactant treatment of severe bronchiolitis. Acta Anaesthesiol Scand. 1998;42(7):805–10.

    Article  CAS  PubMed  Google Scholar 

  50. Luchetti M, Ferrero F, Gallini C, Natale A, Pigna A, Tortorolo L, et al. Multicenter, randomized, controlled study of porcine surfactant in severe respiratory syncytial virus-induced respiratory failure. Pediatr Crit Care Med. 2002;3(3):261–8.

    Article  PubMed  Google Scholar 

  51. Willson DF, Zaritsky A, Bauman LA, Dockery K, James RL, Conrad D, et al. Instillation of calf lung surfactant extract (calfactant) is beneficial in pediatric acute hypoxemic respiratory failure. Members of the Mid-Atlantic Pediatric Critical Care Network. Crit Care Med. 1999;27(1):188–95.

    Article  CAS  PubMed  Google Scholar 

  52. Moller JC, Schaible T, Roll C, Schiffmann JH, Bindl L, Schrod L, et al. Treatment with bovine surfactant in severe acute respiratory distress syndrome in children: a randomized multicenter study. Intensive Care Med. 2003;29(3):437–46.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Willson DF, Thomas NJ, Markovitz BP, Bauman LA, DiCarlo JV, Pon S, et al. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA. 2005;293(4):470–6.

    Article  CAS  PubMed  Google Scholar 

  54. Thomas NJ, Guardia CG, Moya FR, Cheifetz IM, Markovitz B, Cruces P, et al. A pilot, randomized, controlled clinical trial of lucinactant, a peptide-containing synthetic surfactant, in infants with acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13(6):646–53.

    Article  PubMed  Google Scholar 

  55. Willson DF, Thomas NJ, Tamburro R, Truemper E, Truwit J, Conaway M, et al. Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med. 2013;14(7):657–65.

    Article  PubMed  Google Scholar 

  56. Wong JJ, Jit M, Sultana R, Mok YH, Yeo JG, Koh J, et al. Mortality in pediatric acute respiratory distress syndrome: a systematic review and meta-analysis. J Intensive Care Med. 2017:885066617705109.

    Google Scholar 

  57. Orwoll BE, Sapru A. Biomarkers in pediatric ARDS: future directions. Front Pediatr. 2016;4:55.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Conrad SA, Bagley A, Bagley B, Schaap RN. Major findings from the clinical trials of the intravascular oxygenator. Artif Organs. 1994;18(11):846–63.

    Article  CAS  PubMed  Google Scholar 

  59. Budilarto SG, Frankowski BJ, Hattler BG, Federspiel WJ. Flow visualization study of a novel respiratory assist catheter. Artif Organs. 2009;33(6):411–8.

    Article  PubMed  Google Scholar 

  60. Hattler BG, Lund LW, Golob J, Russian H, Lann MF, Merrill TL, et al. A respiratory gas exchange catheter: in vitro and in vivo tests in large animals. J Thorac Cardiovasc Surg. 2002;124(3):520–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis P. Vesel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vesel, T.P., Cheifetz, I.M. (2019). Ventilator Management for Pediatric Acute Respiratory Distress Syndrome. In: Mastropietro, C., Valentine, K. (eds) Pediatric Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-96499-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96499-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96498-0

  • Online ISBN: 978-3-319-96499-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics