Skip to main content

Interface-Reproducing Capturing (IRC) Technique for Fluid-Structure Interaction: Methods and Applications

  • Chapter
  • First Online:
Frontiers in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

How to enhance the interface-capturing (IC) computation of fluid–structure interaction (FSI) is a long-standing issue for IC approaches. This chapter introduces approaches based on an extended finite element method (XFEM) and a Lagrange multiplier (LM) method, as well as our contribution to the problem. The XFEM-based approach develops a framework for an interface-reproducing capturing (IRC) method whose spatial functions are locally equivalent to those of interface-tracking (IT) methods. The XFEM enriches the velocity and pressure function spaces of the local flow around the interface. This enrichment reproduces requisite discontinuities at the interface. Simultaneously, the LM method imposes continuity on the fluid and structure to couple them, and thus the fluid captures the interface. This chapter gives an overview, describes the methods and solution techniques, and shows verifications and applications, focusing mainly on computing the fluid–thin-structure interaction (FTSI). The verifications reveal how continuity and discontinuity at the interface affect the FSI computation and why the IRC method is effective. Applications to flow-induced flutter of flexible thin objects show the ability of the proposed method to take on the challenge of computing complex FSI problems. Applications to flows past fixed objects show its ability to compute simple problems with ease. The IRC method therefore has two aspects and potentials. Open issues mentioned in this chapter indicate that there is still much room for advancing the IC method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An elegant technique and concept proposed by Tezduyar and named FSILT-ED (fluid–solid interface locator technique-extended domain) can be found in [28, 33, 34, 37]. FSILT-ED applies a stabilized LM method or a penalty method at the interface, with an elaborate treatment of the interpolation of pressure across the interface, introducing fluid domains extended virtually from one side of the interface to the other. We consider the ED technique as a way to extrapolate from one side to the interface in a finite element. See [28, 33, 34, 37].

  2. 2.

    XFEM can accept various types of enrichment function ϕ(x, t). For example, as well as the edge function e(x, t), the ramp function r(x, t) given by

    $$\displaystyle \begin{aligned} r\left(\mathbf{x},t\right) =\sum_{I\in Q_{f}}N_{I}\left|F_{I}\right|-e\left(\mathbf{x},t\right) {} \end{aligned} $$
    (53)

    can reproduce a weak discontinuity and is generally considered superior to the edge function in doing so because it can reproduce the discontinuity within crossed elements without the need for partially enriched surrounding elements called blending elements in XFEM. However, if we adopt the ramp function, the interfacial velocity has time-dependent enrichment terms as follows:

    $$\displaystyle \begin{aligned} \mathbf{v}\left({\mathbf{x}}_{i},t\right)=\sum_{I\in Q_{fi}}N_{I}{\mathbf{V}}_{I}+r\left({\mathbf{x}}_{i},t\right)\sum_{I\in Q_{fi}}N_{I}\tilde{\mathbf{V}}_{I}, \quad \mathrm{with}\quad r\left({\mathbf{x}}_{i},t\right)=\sum_{I\in Q_{fi}}N_{I}\left|F_{I}\right|. {} \end{aligned} $$
    (54)

    For FSI and flow with moving boundaries, enrichment functions that meet neither ∂ϕ(xi, t)∕∂t = 0 nor ϕ(xi, t) = 0 seem to cause temporal instability even if the time dependence is accounted for in the computation. We therefore select the edge function for the enrichment.

  3. 3.

    The multiplier mesh for 𝜖 = 2 is twice as coarse as that for 𝜖 = 1 if nf is fixed. Therefore, the multipliers shown in Figs. 11 and 12 are twice as coarse as those of Figs. 9 and 10, respectively.

References

  1. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Engrg 29:329–349.

    Article  MathSciNet  MATH  Google Scholar 

  2. Belytschko T, Flanagan DP, Kennedy J (1982) Finite element method with user-controlled meshes for fluid–structure interactions. Comput Methods Appl Mech Engrg 33:689–723.

    Article  MATH  Google Scholar 

  3. Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Engrg 69:277–324.

    Article  MATH  Google Scholar 

  4. Huerta A, Liu W (1988), Viscous flow structure interaction. J Pressure Vessel Tech 110:15–21.

    Article  Google Scholar 

  5. Nitikitpaiboon C, Bathe KJ (1993) An arbitrary Lagrangian–Eulerian velocity potential formulation for fluid–structure interaction. Comput Struct 47(4):871–891.

    Article  MATH  Google Scholar 

  6. Bathe K, Zhang H, Wang M (1995) Finite element analysis of incompressible and compressible fluid flows with free interfaces and structural interactions. Comput Struct 56:193–213.

    Article  MATH  Google Scholar 

  7. Zhang Q, Hisada T (2001) Analysis of fluid–structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput Methods Appl Mech Engrg 190:6341–6357.

    Article  MATH  Google Scholar 

  8. Watanabe H, Hisada T, Sugiura S, Okada J, Fukunari H (2002) Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid–structure interaction finite element method. JSME Int J Ser C 45(4):1003–1012.

    Article  Google Scholar 

  9. Kuhl E, Hulshoff S, Borst DR (2003) An arbitrary Lagrangian Eulerian finite-element approach for fluid–structure interaction phenomena. Int J Numer Meth Engng 57:117–142.

    Article  MATH  Google Scholar 

  10. Watanabe H, Sugiura S, Hisada T (2004) Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J 87(3):2074–2085.

    Article  Google Scholar 

  11. Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Meth Engng 64:167–203.

    Article  MATH  Google Scholar 

  12. Sawada T, Hisada T (2006) Fluid–structure interaction analysis of a two-dimensional flag-in-wind problem by the ALE finite element method. JSME Int J Ser A 49(2):170–179.

    Article  MATH  Google Scholar 

  13. Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method. Comput Fluids 36:136–146.

    Article  MATH  Google Scholar 

  14. Sawada T, Tezuka A, Hisada T (2007) Overlaying mesh method for large deformation fluid–shell interaction analysis using interface-tracking ALE local mesh and immersed boundary global mesh. Trans JSCES 20070029:1–10 (in Japanese Language).

    Google Scholar 

  15. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sawada T, Tezuka A, Hisada T (2008) Performance comparison between the fluid–shell coupled overlaying mesh method and the immersed boundary method. Trans JSCES 20080005:1–14 (in Japanese Language).

    Google Scholar 

  17. Ishihara D, Horie Y, Denda M (2009) Two dimensional computational study on fluid–structure interaction cause of wing pitch changes in dipteran flapping flight. J Exp Bio 212:1–10.

    Article  Google Scholar 

  18. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Engrg 249–252: 28–41.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Comput Methods Appl Mech Engrg 284: 1005–1053.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – The deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Engrg 94:339–351.

    Article  MathSciNet  MATH  Google Scholar 

  21. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – The deforming-spatial-domain/space–time procedure: II. Computations of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Engrg 94:353–371.

    Article  MathSciNet  MATH  Google Scholar 

  22. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations. New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, 7–24.

    Google Scholar 

  23. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36.

    Article  MATH  Google Scholar 

  24. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Engrg 119:73–94.

    Article  MATH  Google Scholar 

  25. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows – fluid–structure interactions. Int J Numer Meth Fluids 21:933–953.

    Article  MATH  Google Scholar 

  26. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Engrg 190:321–332.

    Article  MATH  Google Scholar 

  27. Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Engrg 191:705–716.

    Article  MATH  Google Scholar 

  28. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Meth Engng 8:83–130.

    Article  MATH  Google Scholar 

  29. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63.

    Article  MATH  Google Scholar 

  30. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Engrg 193:2019–2032.

    Article  MATH  Google Scholar 

  31. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Engrg 195:1885–1895.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Engrg 195:2002–2027.

    Article  MathSciNet  MATH  Google Scholar 

  33. Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Engrg 195:2983–3000.

    Article  MathSciNet  MATH  Google Scholar 

  34. Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11.

    Article  MATH  Google Scholar 

  35. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int J Numer Meth Fluids 54:855–900.

    Article  MATH  Google Scholar 

  36. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Meth Fluids 54:901–922.

    Article  MATH  Google Scholar 

  37. Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Meth Fluids 54:1021–1030.

    Article  MATH  Google Scholar 

  38. Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: Contact problems. Comput Mech 43:51–60.

    Article  MATH  Google Scholar 

  39. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Comput Mech 43:151–159.

    Article  MATH  Google Scholar 

  40. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29.

    Article  MathSciNet  MATH  Google Scholar 

  41. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Meth Fluids 64:1201–1218.

    Article  MATH  Google Scholar 

  42. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Meth Biomed Engng 26:101–116.

    Article  MATH  Google Scholar 

  43. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48(3):247–267.

    Article  MathSciNet  MATH  Google Scholar 

  44. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Meth Fluids 65:271–285.

    Article  MATH  Google Scholar 

  45. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Meth Fluids 65:324–340.

    Article  MATH  Google Scholar 

  46. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Meth Engng 19:125–169.

    Article  MathSciNet  MATH  Google Scholar 

  47. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Meth Engng 19:171–225.

    Article  MathSciNet  MATH  Google Scholar 

  48. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Mathematical Models and Methods in Applied Sciences 22(supp02):1230001.

    Article  MathSciNet  MATH  Google Scholar 

  49. Takizawa K, Tezduyar TE (2014) Main aspects of the space–time computational FSI techniques and examples of challenging problems solved. Mechanical Engineering Reviews 1:CM0005, inaugural issue.

    Article  Google Scholar 

  50. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971.

    Article  MathSciNet  MATH  Google Scholar 

  51. Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476.

    Article  MathSciNet  MATH  Google Scholar 

  52. Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathematical Models and Methods in Applied Sciences 24:2437–2486.

    Article  MathSciNet  MATH  Google Scholar 

  53. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Meth Engng 21:481–508.

    Article  MathSciNet  MATH  Google Scholar 

  54. Peskin CS (1972) Flow patterns around heart valves: A numerical method. J Comput Phys 10:252–271.

    Article  MATH  Google Scholar 

  55. Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517.

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468.

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhu L, Peskin CS (2003) Interaction of two flapping filaments in a flowing soap film. Phys Fluids 15(7):1954–1960.

    Article  MathSciNet  MATH  Google Scholar 

  58. Peskin C (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252.

    Article  MathSciNet  MATH  Google Scholar 

  59. Huang WX, Shin SJ, Sung HJ (2007) Simulation of flexible filaments in a uniform flow by the immersed boundary method. J Comput Phys 226:2206–2228.

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhu L (2009) Interaction of two tandem deformable bodies in a viscous incompressible flow. J Fluid Mech 635:455–475.

    Article  MathSciNet  MATH  Google Scholar 

  61. Li Z (1997) Immersed interface methods for moving interface problems. Numerical Algorithms 14(4):269–293.

    Article  MathSciNet  MATH  Google Scholar 

  62. Boffi D, Gastaldi L (2003) A finite element approach for the immersed boundary method. Comput Struct 81:491–501.

    Article  MathSciNet  Google Scholar 

  63. Wang X, Liu WK (2004) Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Engrg 193:1305–1321.

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Engrg 193:2051–2067.

    Article  MathSciNet  MATH  Google Scholar 

  65. Wang H, Chessa J, Liu WK, Belytschko T (2008) The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members. Int J Numer Meth Engng 74:32–55.

    Article  MathSciNet  MATH  Google Scholar 

  66. Glowinski R, Pan TW, Périaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Engrg 151:181–194.

    Article  MathSciNet  MATH  Google Scholar 

  67. Glowinski R, Pan TW, Hesla TI, Joseph DD, and Périaux J (1999) A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application of particulate flow. Int J Numer Meth Fluids 30:1043–1066.

    Article  MATH  Google Scholar 

  68. Hart DJ, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure interaction model of the aortic valve. J Biomech 33:1079–1088.

    Article  Google Scholar 

  69. Hart DJ, Baaijens FPT, Peters GWM, Schreurs PJG (2003) A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve, J Biomech 36:699–712.

    Article  Google Scholar 

  70. Loon RV, Anderson PD, Hart DJ, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numer Meth Fluids 46:533–544.

    Article  MATH  Google Scholar 

  71. Yu Z (2005) A DLM/FD method for fluid/flexible-body interactions. J Comput Phys 207(1):1–27.

    Article  MATH  Google Scholar 

  72. Wagner GJ, Moës N, Liu WK, Belytschko T (2001) The extended finite element method for rigid particles in Stokes flow. Int J Numer Meth Engng 51:293–313.

    Article  MathSciNet  MATH  Google Scholar 

  73. Wagner GJ, Ghosal S, Liu WK (2003) Particulate flow simulations using lubrication theory solution enrichment. Int J Numer Meth Engng 56:1261–1289.

    Article  MathSciNet  MATH  Google Scholar 

  74. Chessa J, Belytschko T (2003) An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. Int J Numer Meth Engng 58:2041–2064.

    Article  MathSciNet  MATH  Google Scholar 

  75. Sawada T, Nakasumi S, Tezuka A, Fukushima M, Yoshizawa Y (2009) Extended-FEM for the solid–fluid mixture two-scale problems with BCC and FCC microstructures. Interaction & Multiscale Mech Int J 2(1):45–68.

    Article  Google Scholar 

  76. Legay A, Chessa J, Belytschko T (2006) An Eulerian–Lagrangian method for fluid–structure interaction based on level sets. Comput Methods Appl Mech Engrg 195:2070–2087.

    Article  MathSciNet  MATH  Google Scholar 

  77. Legay A, Kölke A (2006) An enriched space–time finite element method for fluid–structure interaction – Part I: Prescribed structural displacement. Proc III ECCM, Solid Struct Coupling Prob Eng, Lisbon Portugal, 5–8 Jun 2006.

    Google Scholar 

  78. Kölke A, Legay A (2006) An enriched space–time finite element method for fluid–structure interaction – Part II: Thin flexible structures. Proc III ECCM, Solid Struct Coupling Prob Eng, Lisbon Portugal, 5–8 Jun 2006.

    Google Scholar 

  79. Sawada T, Tezuka A, Hisada T (2007) Extended finite element method for the fluid–structure interaction problems based on discontinuous interpolations on level set interfaces. Proc APCOM’07–EPMESC XI, MS20-3(2):1–10, Kyoto Japan, 3–6 Dec 2007.

    Google Scholar 

  80. Zilian A, Legay A (2008) The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction. Int J Numer Meth Engng 75:305–334.

    Article  MathSciNet  MATH  Google Scholar 

  81. Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Engrg 197:1699–1714.

    Article  MathSciNet  MATH  Google Scholar 

  82. Gerstenberger A, Wall WA. (2008) Enhancement of fixed-grid methods towards complex fluid–structure interaction applications. Int J Numer Meth Fluids 57:1227–1248.

    Article  MathSciNet  MATH  Google Scholar 

  83. Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional higher-order XFEM-computations in fluid–structure interaction. Int J Numer Meth Engng 79:846–869.

    Article  MATH  Google Scholar 

  84. Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Meth Engng 82:537–563.

    MathSciNet  MATH  Google Scholar 

  85. Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid–structure–contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Struct 46:53–67.

    MathSciNet  MATH  Google Scholar 

  86. Sawada T, Tezuka A (2010) High-order Gaussian quadrature in X-FEM with the Lagrange-multiplier for fluid–structure coupling. Int J Numer Meth Fluids 64:1219–1239.

    Article  MathSciNet  MATH  Google Scholar 

  87. Nakamoto H, Sawada T, Hattori S, Tezuka A (2010) Advanced simulation technology for innovating air-assisted paper-feed mechanism. Toshiba Review 65(8):35–39 (in Japanese Language).

    Google Scholar 

  88. Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech 48:319–332.

    Article  MathSciNet  MATH  Google Scholar 

  89. Sawada T, Nagahama S, Sasaki S, Tezuka A (2011) Development of simulation-based design (SBD) framework for flow with structure interfaces using X-FEM. Trans JSCES 20110003:1–13 (in Japanese language).

    Google Scholar 

  90. Sawada T (2013) Foundation and application of extended finite element method. Nagare 32:221–225 (in Japanese language).

    Google Scholar 

  91. Farnell DJJ, David T, Barton DC (2004) Numerical simulations of a filament in a flowing soap film. Int J Numer Meth Fluids 44:313–330.

    Article  MATH  Google Scholar 

  92. Farnell DJJ, David T, Barton DC (2004) Coupled states of flapping flags. J Fluids Struct 19:29–36.

    Article  Google Scholar 

  93. Cirak F, Radovitzky R (2005) A Lagrangian–Eulerian shell–fluid coupling algorithm base on level sets. Comput Struct 85:491–498.

    Article  Google Scholar 

  94. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40:167–183.

    Article  MATH  Google Scholar 

  95. Wang H, Belytschko T (2009) Fluid–structure interaction by the discontinuous-Galerkin method for large deformations. Int J Numer Meth Engng 77:30–49.

    Article  MathSciNet  MATH  Google Scholar 

  96. Hashimoto G, Ono K (2010) Interface treatment under no-slip conditions using level-set virtual particles for fluid–structure interaction. Theor Appl Mech Japan 58:325–342.

    Google Scholar 

  97. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Engrg 32:199–259.

    Article  MathSciNet  MATH  Google Scholar 

  98. Tezduyar TE, Liou J, Ganjoo DK (1990) Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. Comput Struct 35:445–472.

    Article  MATH  Google Scholar 

  99. Tezduyar TE, Mittal S, Shih R (1991) Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. Comput Methods Appl Mech Engrg 87:363–384.

    Article  MATH  Google Scholar 

  100. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Engrg 95:221–242.

    Article  MATH  Google Scholar 

  101. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adva Appl Mech 28:1–44.

    MathSciNet  MATH  Google Scholar 

  102. Hannani SK, Stanislas M, Dupont P (1995) Incompressible Navier–Stokes computations with SUPG and GLS formulations – A comparison study. Comput Methods Appl Mech Engrg 124:153–170.

    Article  Google Scholar 

  103. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Engrg 127:387–401.

    Article  MathSciNet  MATH  Google Scholar 

  104. Hughes TJR, Feij’oo GR, Mazzei L, Quincy JB (1998) The variational multiscale method – a paradigm for computational mechanics. Comput Methods Appl Mech Engrg 166:3–24.

    Article  MathSciNet  MATH  Google Scholar 

  105. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Engrg 190:411–430.

    Article  MATH  Google Scholar 

  106. Hughes TJR, Mazzei L, Jansen KE (2000) Large Eddy Simulation and the variational multiscale method. Comput Visual Sci 3:47–59.

    Article  MATH  Google Scholar 

  107. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575.

    Article  MathSciNet  MATH  Google Scholar 

  108. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Greenfs function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539–557.

    Article  MathSciNet  MATH  Google Scholar 

  109. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Engrg 199:828–840.

    Article  MathSciNet  MATH  Google Scholar 

  110. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Engng 46(1):131–150.

    Article  MATH  Google Scholar 

  111. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Meth Engng 50(4):993–1013.

    Article  MATH  Google Scholar 

  112. Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Engrg 190:6183–6200.

    Article  MathSciNet  MATH  Google Scholar 

  113. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Engrg 192:3163–3177.

    Article  MATH  Google Scholar 

  114. Chessa J, Belytschko T (2004) Arbitrary discontinuities in space–time finite elements by level sets and X-FEM. Int J Numer Meth Engng 61:2595–2614.

    Article  MathSciNet  MATH  Google Scholar 

  115. Barbosa HJC, Hughes TJR (1991) The finite element method with Lagrange multipliers on the boundary: Circumventing the Babuska–Brezzi condition. Comput Methods Appl Mech Engrg 85(1):109–128.

    Article  MathSciNet  MATH  Google Scholar 

  116. Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Meth Engng 61:2508–2535.

    Article  MATH  Google Scholar 

  117. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Engrg 193(12–14):1257–1275.

    Article  MathSciNet  MATH  Google Scholar 

  118. Moës N, Béchet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Meth Engng 67(12):1641–1669.

    Article  MathSciNet  MATH  Google Scholar 

  119. Newmark NM (1959) A method of computation for structural dynamics. J Engng Mech Div, Proc ASCE 85(EM3):67–94.

    Google Scholar 

  120. Huber G (2000) Swimming in flatsea. Nature 408:777–778.

    Article  Google Scholar 

  121. Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408:835–839.

    Article  Google Scholar 

  122. Watanabe Y, Suzuki S, Sugihara M, Sueoka Y (2002) An experimental study of paper flutter. J Fluids Struct 16:529–542.

    Article  Google Scholar 

  123. Watanabe Y, Isogai K, Suzuki S, Sugihara M (2002) An theoretical study of paper flutter. J Fluids Struct 16:543–560.

    Article  Google Scholar 

  124. Shelley M, Vandenberghe N, Zhang J (2005) Heavy flags undergo spontaneous oscillations in flowing water. Phys Rev Lett 94:094302(4).

    Article  Google Scholar 

  125. Eloy C, Souilliez C, Schouveiler L (2007) Flutter of a rectangular plate. J Fluids Struct 23:904–919.

    Article  Google Scholar 

  126. Schouveiler L, Eloy C (2009) Coupled flutter of parallel plates. Phys Fluids 21:081703(4).

    Article  MATH  Google Scholar 

  127. Alben S, Shelley MJ (2008) Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys Rev Lett 100:074301(4).

    Article  Google Scholar 

  128. Shelley MJ, Zhang J (2011) Flapping and bending bodies interacting with fluid flows. Annu Rev Fluid Mech 43:449–465.

    Article  MathSciNet  MATH  Google Scholar 

  129. Singh RK, Kant T, Kakodkar A (1991) Coupled shell–fluid interaction problems with degenerate shell and three-dimensional fluid elements. Comput Struct 38(5):515–528.

    Article  MATH  Google Scholar 

  130. Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in the extended finite element method. Int J Numer Meth Engng 77(1):1–29.

    Article  MathSciNet  MATH  Google Scholar 

  131. Mousavi SE, Sukumar N (2010) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554.

    Article  MathSciNet  MATH  Google Scholar 

  132. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Engrg 197: 3768–3782.

    Article  MathSciNet  MATH  Google Scholar 

  133. Flemisch B, Wohlmuth BI (2007) Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Comput Methods Appl Mech Engrg 196(8):1589–1602.

    Article  MathSciNet  MATH  Google Scholar 

  134. Cho JY, Song YM, Choi YH (2008) Boundary locking induced by penalty enforcement of essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Engrg 197(13–16): 167–1183.

    MathSciNet  MATH  Google Scholar 

  135. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88.

    Article  Google Scholar 

  136. Dvorkin EN (1988) On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Meth Engng 26:1597–1613.

    Article  MATH  Google Scholar 

  137. Parisch H (1991) An investigation of a finite rotation four node assumed strain shell element. Int J Numer Meth Engng 31:127–150.

    Article  MATH  Google Scholar 

  138. Noguchi H, Hisada T (1993) Sensivity analysis in post-buckling problems of shell structures. Comput Struct 47(4):699–710.

    Article  MATH  Google Scholar 

  139. Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Tayfun E. Tezduyar at Rice University, USA, for useful comments on advanced FSI and stabilization techniques. I would also like to thank Dr. Jun-ichi Matsumoto at AIST, Japan, for daily discussions about computational flow techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Sawada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawada, T. (2018). Interface-Reproducing Capturing (IRC) Technique for Fluid-Structure Interaction: Methods and Applications. In: Tezduyar, T. (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96469-0_11

Download citation

Publish with us

Policies and ethics