Skip to main content

A Comparison of Bio-Inspired Approaches for the Cluster-Head Selection Problem in WSN

  • Chapter
  • First Online:
Advances in Nature-Inspired Computing and Applications

Abstract

A Wireless Sensor Network (WSN) is composed of a set of energy and processing-constrained devices that gather data about a set of phenomena. An efficient way to enlarge the lifetime of a wireless sensor network is clustering organization, which structures hierarchically the sensors in groups and assigns one of them as a cluster head. Such cluster head is responsible of specific tasks like gathering data from other cluster sensors and resending it to the base station through the network. Using a cluster-head organization, data gathering process is improved and by extension, the network lifetime is enlarged. However, due to the additional tasks that every cluster head has to perform, their own energy is spent faster than that of the other sensors in the cluster. Each time that a cluster head is out of battery, it is necessary to select a new cluster head from the survival sensors to continue with head duties. In this chapter, we present a performance comparison of three state-of-the-art MOEAs, namely NSGA-II, SMS-EMOA, and MOEA/D for the cluster-head selection problem in Wireless Sensor Networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abo-Zahhad M, Ahmed SM, Sabor N, Sasaki S (2014) A new energy-efficient adaptive clustering protocol based on genetic algorithm for improving the lifetime and the stable period of wireless sensor networks. Int J Energy Inf Commun 5(3):47–72

    Google Scholar 

  2. Afsar MM, Tayarani-N MH (2014) Clustering in sensor networks: a literature survey. J Netw Comput Appl 46:198–226

    Article  Google Scholar 

  3. Anastasi G, Conti M, Di Francesco M, Passarella A (2009) Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw 7(3):537–568

    Article  Google Scholar 

  4. Azad P, Sharma V (2014) Pareto-optimal clustering scheme using data aggregation for wireless sensor networks. Int J Electron 102(7):1165–1176

    Article  Google Scholar 

  5. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  Google Scholar 

  6. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62

    MATH  Google Scholar 

  7. Brockhoff D, Zitzler E (2006) Are All objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: PPSN IX, pp 533–542

    Google Scholar 

  8. Carlsson C, Fullér R (1994) Interdependence in fuzzy multiple objective programming. Fuzzy Sets Syst 65(1):19–30

    Article  MathSciNet  Google Scholar 

  9. Carlsson C, Fullér R (1995) Multiple criteria decision making: the case for interdependence. Comput Oper Res 22(3):251–260

    Article  Google Scholar 

  10. Coello Coello CA (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst Int J 1(3):269–308

    Article  Google Scholar 

  11. Coello Coello CA, Reyes Sierra M (2004) A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy R, Arroyo-Figueroa G, Sucar LE, Sossa H (eds) Proceedings of the third mexican international conference on artificial intelligence (MICAI’2004), Lecture notes in artificial intelligence, vol 2972, Springer, Berlin, pp 688–697

    Google Scholar 

  12. Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimization. In: Schaffer JD (ed) Proceedings of the third international conference on genetic algorithms, George Mason University, Morgan Kaufmann Publishers, San Mateo, California, pp 42–50

    Google Scholar 

  13. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  14. Elhabyan R, Yagoub MC (2014) PSO-HC: particle swarm optimization protocol for hierarchical clustering in wireless sensor networks. In: Proceedings of CollaborateCom, Miami, FL, USA, pp 417–424

    Google Scholar 

  15. Farhang-Mehr A, Azarm S (2002) Diversity assessment of pareto optimal solution sets: an entropy approach. In: Congress on evolutionary computation (CEC’2002), vol 1, IEEE Service Center, Piscataway, New Jersey, pp 723–728

    Google Scholar 

  16. Fliege J (2006) An efficient interior-point method for convex multicriteria optimization problems. Math Oper Res 31:825–845

    Article  MathSciNet  Google Scholar 

  17. Gee SB, Tan KC, Shim VA, Pal NR (2015) Online diversity assessment in evolutionary multiobjective optimization: a geometrical perspective. IEEE Trans Evol Comput 19(4):542–559

    Article  Google Scholar 

  18. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

    MATH  Google Scholar 

  19. Gupta V, Sharma SK (2015) Cluster head selection using modified ACO. Springer India, New Delhi, pp 11–20

    Google Scholar 

  20. Hallam N, Blanchfield P, Kendall G (2005) Handling diversity in evolutionary multiobjective optimisation. In: 2005 IEEE congress on evolutionary computation (CEC’2005), vol 3, IEEE Service Center, Edinburgh, Scotland, pp 2233–2240

    Google Scholar 

  21. Hansen MP, Jaszkiewicz A (1998) Evaluating the quality of approximations to the non-dominated set. Technical Report IMM-REP-1998-7, Technical University of Denmark

    Google Scholar 

  22. Iqbal M, Naeem M, Anpalagan A, Qadri N, Imran M (2016) Multi-objective optimization in sensor networks: optimization classification, applications and solution approaches. Comput Netw 99:134–161

    Article  Google Scholar 

  23. Ishibuchi H, Setoguchi Y, Masuda H, Nojima Y (2017) Performance of decomposition based many-objective algorithms strongly depends on pareto front shapes. IEEE Trans Evolut Comput 21(2):169–190

    Article  Google Scholar 

  24. Jiang S, Ong YS, Zhang J, Feng L (2014) Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans Cybern 44(12):2391–2404

    Article  Google Scholar 

  25. Kheireddine M, Abdellatif R, Ferrari G (2015) Genetic centralized dynamic clustering in wireless sensor networks. In: Proceedings of CIIA, pp 503–511

    Google Scholar 

  26. Knowles J, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers. 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland (2006). Revised version

    Google Scholar 

  27. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 3(2):284–302

    Article  Google Scholar 

  28. Li, H., Zhang, Q., Deng, J.: Multiobjective Test Problems with Complicated Pareto Fronts: Difficulties in Degeneracy. In: 2014 IEEE congress on evolutionary computation (CEC’2014), IEEE Press, Beijing, China, pp 2156–2163, ISBN 978-1-4799-1488-3

    Google Scholar 

  29. Li M, Yang S, Liu X (2014) Diversity comparison of pareto front approximations in many-objective optimization. IEEE Trans Cybern 44(12):2568–2584

    Article  Google Scholar 

  30. López Jaimes A, Coello Coello CA (2015) Many-objective problems: challenges and methods. In: Kacprzyk J, Pedrycz W (eds) Springer handbook of computational intelligence, Chap. 51. Springer, Berlin Heidelberg, pp 1033–1046

    Chapter  Google Scholar 

  31. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Boston, Massachuisetts

    MATH  Google Scholar 

  32. Miranda K, Ramos V (2016) Improving data aggregation in wireless sensor networks with time series estimation. IEEE Lat Am Trans 14(5):2425–2432

    Article  Google Scholar 

  33. Naujoks B, Beume N, Emmerich M (2005) Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces. In: Evolutionary computation, 2005. The 2005 IEEE congress on, vol 2, IEEE, pp 1282–1289

    Google Scholar 

  34. Nedjah N, de Macedo Mourelle L (2015) Evolutionary multi-objective optimisation: a survey. Int J Bio Inspired Comput 7(1):1–25

    Article  Google Scholar 

  35. Okabe T, Jin Y, Sendhoff B (2003) A critical survey of performance indices for multiobjective optimization. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol 2, IEEE Press, Canberra, Australia, pp 878–885

    Google Scholar 

  36. Purshouse RC, Fleming PJ (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evol Comput 11(6):770–784

    Article  Google Scholar 

  37. Scheffé H (1958) Experiments with mixtures. J Roy Stat Soc Ser B Methodol 20(2):344–360

    MathSciNet  MATH  Google Scholar 

  38. Sett S, Guha Thakurta PK (2015) Multi objective optimization on clustered mobile networks: an ACO based approach. In: Proceedings of India, Kalyani, India, pp 123–133

    Google Scholar 

  39. Singh B, Lobiyal DK (2012) A novel energy-aware cluster head selection based on particle swarm optimization for wireless sensor networks. Hum Centric Comput Inf Sci 2(1):13

    Article  Google Scholar 

  40. Slavik M, Mahgoub I, Badi A, Ilyas M (2010) Analytical model of energy consumption in hierarchical wireless sensor networks. In: Proceedings of HONET, pp 84–90

    Google Scholar 

  41. Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  42. Tubaishat M, Madria S (2003) Sensor networks: an overview. IEEE Potentials 22(2):20–23

    Article  Google Scholar 

  43. Wang H, Jin Y, Yao X (2017) Diversity assessment in many-objective optimization. IEEE Trans Cybern 47(6):1510–1522. https://doi.org/10.1109/TCYB.2016.2550502

    Article  Google Scholar 

  44. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  45. Zapotecas-Martínez S, Coello Coello CA, Aguirre HE, Tanaka K (2017) A new set of scalable multi-objective test problems. Part I: features and limitations of existing benchmarks. Technical Report, Universidad Autónoma Metropolitana (UAM), Cuajimalpa, CDMX, MEXICO

    Google Scholar 

  46. Zeleny M (1974) Linear multiobjective programming, vol 95. Lecture notes in economics and mathematical systems. Springer Verlag, Berlin

    MATH  Google Scholar 

  47. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  48. Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE congress on evolutionary computation, pp 203–208

    Google Scholar 

  49. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut Comput 1(1):32–49

    Article  Google Scholar 

  50. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Yao X et al (ed) Parallel problem solving from nature—PPSN VIII, lecture notes in computer science, vol 3242. Springer, Birmingham, UK, pp 832–842

    Google Scholar 

  51. Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis D, Periaux J, Papailou P, Fogarty T (eds) EUROGEN 2001. Evolutionary methods for design, optimization and control with applications to industrial problems, Athens, Greece, pp 95–100

    Google Scholar 

  52. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative study. In: Eiben AE (ed) Parallel problem solving from nature V. Springer, Amsterdam, pp 292–301

    Chapter  Google Scholar 

  53. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miranda, K., Zapotecas-Martínez, S., López-Jaimes, A., García-Nájera, A. (2019). A Comparison of Bio-Inspired Approaches for the Cluster-Head Selection Problem in WSN. In: Shandilya, S., Shandilya, S., Nagar, A. (eds) Advances in Nature-Inspired Computing and Applications. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-96451-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96451-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96450-8

  • Online ISBN: 978-3-319-96451-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics