Advertisement

Mapping Intelligence: Requirements and Possibilities

  • Sankalp Bhatnagar
  • Anna Alexandrova
  • Shahar Avin
  • Stephen Cave
  • Lucy Cheke
  • Matthew Crosby
  • Jan Feyereisl
  • Marta Halina
  • Bao Sheng Loe
  • Seán Ó hÉigeartaigh
  • Fernando Martínez-Plumed
  • Huw Price
  • Henry Shevlin
  • Adrian Weller
  • Alan Winfield
  • José Hernández-Orallo
Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 44)

Abstract

New types of artificial intelligence (AI), from cognitive assistants to social robots, are challenging meaningful comparison with other kinds of intelligence. How can such intelligent systems be catalogued, evaluated, and contrasted, with representations and projections that offer meaningful insights? To catalyse the research in AI and the future of cognition, we present the motivation, requirements and possibilities for an atlas of intelligence: an integrated framework and collaborative open repository for collecting and exhibiting information of all kinds of intelligence, including humans, non-human animals, AI systems, hybrids and collectives thereof. After presenting this initiative, we review related efforts and present the requirements of such a framework. We survey existing visualisations and representations, and discuss which criteria of inclusion should be used to configure an atlas of intelligence.

Notes

Acknowledgements

The initiative was supported by the Leverhulme Trust via the Leverhulme Centre for the Future of Intelligence. J. H-Orallo and F. M-Plumed were supported by EU (FEDER) and the Spanish MINECO under grant TIN 2015-69175-C4-1-R and by GVA under grant PROMETEOII/ 2015/013 and by the Air Force Office of Scientific Research under award number FA9550-17-1-0287. J. H-Orallo also received a Salvador de Madariaga grant (PRX17/00467) from the Spanish MECD for a research stay at the CFI, Cambridge, and a BEST grant (BEST/2017/045) from the GVA for another research stay also at the CFI. F. M-Plumed was also supported by INCIBE (Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad). A. Weller acknowledges support from the David MacKay Newton research fellowship at Darwin College, the Alan Turing Institute under EPSRC grant EP/N510129/1 & TU/B/000074, and the Leverhulme Trust via the CFI.

References

  1. Aarts, A., Anderson, J., Anderson, C., Attridge, P., Attwood, A., Fedor, A.: Estimating the reproducibility of psychological science. Science 349(6251), 1–8 (2015)Google Scholar
  2. Allen Institute for Brain Science: Allen brain observatory (2016). http://observatory.brain-map.org/visualcoding
  3. Arsiwalla, X.D., Moulin-Frier, C., Herreros, I., Sanchez-Fibla, M., Verschure, P.: The morphospace of consciousness. arXiv preprint arXiv:1705.11190 (2017)
  4. Balakhonov, D., Rose, J.: Crows rival monkeys in cognitive capacity. Sci. Rep. 7(1), 8809 (2017)CrossRefGoogle Scholar
  5. Bhatnagar, S., et al.: A First Survey on an Atlas of Intelligence (2017). http://www.dsic.upv.es/~flip/papers/Bhatnagar18_SurveyAtlas.pdf
  6. Boero, F., Bernardi, G.: Phenotypic vs genotypic approaches to biodiversity, from conict to alliance. Mar. Genomics 17, 63–64 (2014)CrossRefGoogle Scholar
  7. Brooks, R.A.: From earwigs to humans. Robot. Auton. Syst. 20(2–4), 291–304 (1997)CrossRefGoogle Scholar
  8. Cadman, E.: AI not just a game for DeepMind’s Demis Hassabis. Financial Times (2014). https://www.ft.com/content/1c9d5410-8739
  9. Castelvecchi, D.: Tech giants open virtual worlds to bevy of AI programs. Nature 540(7633), 323–324 (2016)CrossRefGoogle Scholar
  10. Cattell, R.B., Coulter, M.A.: Principles of behavioural taxonomy and the mathematical basis of the taxonome computer program. Br. J. Math. Stat. Psychol. 19(2), 237–269 (1966)CrossRefGoogle Scholar
  11. Dennett, D.C.: Darwin’s dangerous idea. Sciences 35(3), 34–40 (1995)CrossRefGoogle Scholar
  12. de Valadés, D.: Rhetorica christiana (1579)Google Scholar
  13. Eckersley, P., Nasser, Y., et al.: EFF AI Progress Measurement Project (2017). https://www.eff.org/es/ai/metrics. Accessed 10 Jan 2017
  14. Einav, L., Levin, J.: Economics in the age of big data. Science 346(6210), 1243089 (2014)CrossRefGoogle Scholar
  15. Frey, C.B., Osborne, M.A.: The future of employment: how susceptible are jobs to computerisation? Technol. Forecast. Soc. Chang. 114, 254–280 (2017)CrossRefGoogle Scholar
  16. Gentner, D.: Psychology in cognitive science: 1978–2038. Top. Cogn. Sci. 2(3), 328–344 (2010)CrossRefGoogle Scholar
  17. Gewin, V.: Taxonomy: all living things, online. Nature 418(6896), 362–363 (2002)CrossRefGoogle Scholar
  18. Godfrey-Smith, P.: Towers and trees in cognitive evolution. In: Huebner, B. (ed.) The Philosophy of Daniel Dennett (Chap. 8.1). Oxford University Press (2015)Google Scholar
  19. Gray, H.M., Gray, K., Wegner, D.M.: Dimensions of mind perception. Science 315(5812), 619–619 (2007)CrossRefGoogle Scholar
  20. Hayles, N.K.: Narratives of artificial life. In: Future Natural: Nature, Science, Culture, pp. 146–164. Routledge, London (1996)Google Scholar
  21. Hernández-Orallo, J., et al.: A new AI evaluation cosmos: ready to play the game? AI Mag. 38(3), 66–69 (2017). https://www.aaai.org/ojs/index.php/aimagazine/article/view/2748CrossRefGoogle Scholar
  22. Hernández-Orallo, J.: The Measure of All Minds: Evaluating Natural and Artificial Intelligence. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  23. Herrmann, E., Call, J., Hernández-Lloreda, M.V., Hare, B., Tomasello, M.: Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317(5843), 1360–1366 (2007)CrossRefGoogle Scholar
  24. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. arXiv preprint arXiv:1710.02298 (2017)
  25. Kirsh, D.: Today the earwig, tomorrow man? Artif. Intell. 47(1–3), 161–184 (1991)MathSciNetCrossRefGoogle Scholar
  26. Landhuis, E.: Neuroscience: big brain, big data. Nature 541(7638), 559–561 (2017)CrossRefGoogle Scholar
  27. Leslie, M.: Calling all taxonomists. Science 307(5712), 1021–1022 (2005)Google Scholar
  28. Lowndes, J.S.S., Best, B.D., Scarborough, C., Afflerbach, J.C., Frazier, M.R., O’Hara, C.C., Halpern, B.S.: Our path to better science in less time using open data science tools. Nat. Ecol. Evol. 1, 0160 (2017)CrossRefGoogle Scholar
  29. Macphail, E.M.: The comparative psychology of intelligence. Behav. Brain Sci. 10(4), 645–656 (1987)CrossRefGoogle Scholar
  30. Marcus, G.: Deep learning: a critical appraisal. arXiv preprint arXiv:1801.00631 (2018)
  31. Marx, V.: Biology: the big challenges of big data. Nature 498(7453), 255–260 (2013)CrossRefGoogle Scholar
  32. McKinlay, R.: Use or lose our navigation skills: automatic wayfinding is eroding natural abilities, warns roger mckinlay. Nature 531(7596), 573–576 (2016)CrossRefGoogle Scholar
  33. Midford, P.E.: Ontologies for behavior. Bioinformatics 20(18), 3700–3701 (2004)CrossRefGoogle Scholar
  34. Miller, R.: Task taxonomy: science or technology? Ergonomics 10(2), 167–176 (1967)CrossRefGoogle Scholar
  35. Milner, G.: Pinpoint: How GPS is Changing Technology, Culture, and Our Minds. WW Norton & Company (2016)Google Scholar
  36. Moravec, H.: When will computer hardware match the human brain. J. Evol. Technol. 1(1), 10 (1998)Google Scholar
  37. National Research Council: Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. National Academies Press (2011)Google Scholar
  38. Ng, A.: What artificial intelligence can and can’t do right now. Harvard Business Review, November 2016Google Scholar
  39. Parr, C.S., et al.: The encyclopedia of life v2: Providing global access to knowledge about life on earth, vol. 2 (2014). http://www.eol.org/
  40. Pfeifer, R.: Embodied artificial intelligence 10 years back, 10 years forward. In: Informatics, pp. 294–310 (2001)Google Scholar
  41. Pinker, S.: The Language Instinct: How the Mind Creates Language. William Morrow and Company (1994)Google Scholar
  42. Roskov, Y., et al.: Species 2000 ITIS catalogue of life. Aeon (2018). http://catalogueoflife.org/col
  43. Schaie, K.W.: Intellectual development in adulthood. In: Birren, J.E., Schaie, K.W. (eds.) Handbook of the Psychology of Aging, vol. 4, pp. 266–286. Academic Press Inc. (1996)Google Scholar
  44. Shah, H., Warwick, K., Vallverdú, J., Wu, D.: Can machines talk? Comparison of eliza with modern dialogue systems. Comput. Hum. Behav. 58, 278–295 (2016)CrossRefGoogle Scholar
  45. Shanahan, M.: Conscious exotica. from algorithms to aliens, could humans ever understand minds that are radically unlike our own? Aeon (2016). https://aeon.co/essays/beyond-humans-what-other-kinds-of-minds-might-be-out-there
  46. Shead, S.: Facebook’s AI boss: in terms of general intelligence, we’re not even close to a rat. Business Insider (2017). http://uk.businessinsider.com/facebooks-ai-boss-in-terms-of-general-intelligence-were-not-even-close-to-a-rat-2017-10
  47. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)
  48. Sloman, A.: The Structure and Space of Possible Minds. University of Sussex, School of Cognitive Sciences (1984)Google Scholar
  49. Solé, R.: Rise of the humanbot. arXiv preprint arXiv:1705.05935 (2017)
  50. Solé, R.V., Macia, J.: Synthetic biocomputation: the possible and the actual. In: ECAL, pp. 29–36 (2011)Google Scholar
  51. Sparrow, B., Liu, J., Wegner, D.M.: Google effects on memory: cognitive consequences of having information at our fingertips. Science, p. 1207745 (2011)Google Scholar
  52. Stuart, S., Wilson, E., McNeely, J., Mittermeier, R., Rodríguez, J.: The barometer of life. Science 328(5975), 177–177 (2010)CrossRefGoogle Scholar
  53. Tegmark, M.: Life 3.0: Being human in the age of artificial intelligence. Knopf (2017)Google Scholar
  54. Thagard, P.: Why cognitive science needs philosophy and vice versa. Top. Cogn. Sci. 1(2), 237–254 (2009)CrossRefGoogle Scholar
  55. Vanschoren, J., et al.: Towards a data science collaboratory. Lecture Notes in Computer Science (IDA 2015), vol. 9385 (2015)Google Scholar
  56. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013).  https://doi.org/10.1145/2641190.2641198CrossRefGoogle Scholar
  57. Wegner, D.M., Gray, K.: The Mind Club: Who Thinks, What Feels, and Why It Matters. Penguin (2017)Google Scholar
  58. Winfield, A.F.: Estimating the energy cost of (artificial) evolution. In: Sayama, H., Rieffel, J., Risi, S., Doursat, R., Lipson, H. (eds.) Proceedings of 14th International Conference on the Synthesis and Simulation of Living Systems (ALife), pp. 872–875. MIT Press (2014)Google Scholar
  59. Winfield, A.F.: How intelligent is your intelligent robot? arXiv preprint arXiv:1712.08878 (2017)
  60. Yampolskiy, R.V.: The universe of minds. arXiv preprint arXiv:1410.0369 (2014)

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sankalp Bhatnagar
    • 1
    • 2
  • Anna Alexandrova
    • 1
    • 4
  • Shahar Avin
    • 3
  • Stephen Cave
    • 1
  • Lucy Cheke
    • 1
    • 11
  • Matthew Crosby
    • 1
    • 7
  • Jan Feyereisl
    • 8
    • 9
  • Marta Halina
    • 1
    • 4
  • Bao Sheng Loe
    • 5
  • Seán Ó hÉigeartaigh
    • 1
    • 3
  • Fernando Martínez-Plumed
    • 6
  • Huw Price
    • 1
    • 3
  • Henry Shevlin
    • 1
  • Adrian Weller
    • 1
    • 12
  • Alan Winfield
    • 1
    • 10
  • José Hernández-Orallo
    • 1
    • 6
  1. 1.Leverhulme Centre for the Future of IntelligenceCambridgeUK
  2. 2.The New SchoolNew YorkUSA
  3. 3.Centre for the study of Existential RiskUniversity of CambridgeCambridgeUK
  4. 4.Department of History and Philosophy of ScienceUniversity of CambridgeCambridgeUK
  5. 5.Psychometrics CentreUniversity of CambridgeCambridgeUK
  6. 6.Universitat Politècnica de ValènciaValènciaSpain
  7. 7.Imperial CollegeLondonUK
  8. 8.AI Roadmap InstitutePragueCzech Republic
  9. 9.GoodAIPragueCzech Republic
  10. 10.Bristol Robotics LaboratoryUWE BristolBristolUK
  11. 11.Department of PsychologyUniversity of CambridgeCambridgeUK
  12. 12.Alan Turing InstituteLondonUK

Personalised recommendations