Classifying Cubic Surfaces over Finite Fields Using Orbiter

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)


We present two algorithms to classify cubic surfaces over a finite fields. An implementation in the programming system Orbiter will be described.


Cubic surface Clebsch Algebra Geometry Classification Finite field 



The author thanks Alain Esculier [7] for providing the original figure of the Clebsch surface with the accompanying Povray [10] source code. He also thanks Professor Hirschfeld and Fatma Karaoglu for stimulating discussions during a Sabbatical stay at the University of Sussex in the Fall of 2017.


  1. 1.
    Betten, A.: Classifying discrete objects with orbiter. ACM Commun. Comput. Algebra 47(3/4), 183–186 (2014). Scholar
  2. 2.
    Betten, A.: Orbiter - a program to classify discrete objects, 2016–2018.
  3. 3.
    Betten, A.:. Rainbow cliques and the classification of small BLT-Sets. In: Kauers, M. (ed.) ISSAC 2013, 26–29 June 2013, Boston, Massachusetts, pp. 53–60 (2013)Google Scholar
  4. 4.
    Betten, A., Hirschfeld, J.W.P., Karaoglu, F.: Classification of cubic surfaces with twenty-seven lines over the finite field of order thirteen. Eur. J. Math. 4(1), 37–50 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Betten, A., Karaoglu, F.: Cubic surfaces over small finite fields. Submitted to Designs, Codes and CryptographyGoogle Scholar
  6. 6.
    Clebsch, A.: Die Geometrie auf den Flächen dritter Ordnung. J. Reine Angew. Math. 65, 359–380 (1866)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Esculier, A.: Clebsch, ses 27 droites, les points de Eckardt. Accessed 15 Apr 2018
  8. 8.
    Hirschfeld, J.W.P.: Finite Projective Spaces of Three Dimensions, x+316 pp. Oxford University Press, Oxford (1985)Google Scholar
  9. 9.
    Karaoglu, F.: The cubic surfaces with twenty-seven lines over finite fields, Thesis, University of Sussex (2018). SubmittedGoogle Scholar
  10. 10.
    Povray. Persistence of vision raytracer.
  11. 11.
    Schläfli, L.: An attempt to determine the twenty-seven lines upon a surface of the third order and to divide such surfaces into species in reference to the reality of the lines upon the surface. Quart. J. Math. 2, 55–110 (1858)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations