Advertisement

DiscreteZOO: Towards a Fingerprint Database of Discrete Objects

  • Katja BerčičEmail author
  • Janoš Vidali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)

Abstract

There have been various efforts to collect certain mathematical results into searchable databases. In this paper, we present DiscreteZOO: a repository and a fingerprint database for discrete mathematical objects. At the moment, it hosts collections of vertex-transitive graphs and maniplexes, which are a common generalisation of maps and abstract polytopes. The project encompasses a tool for handling and maintaining collections of objects, as well as a website and SageMath package for interacting with the database. The project aims to become a general platform to make collections of mathematical objects easier to publish and access.

Keywords

Fingerprint database Vertex-transitive graphs Maniplexes SageMath package Website 

References

  1. 1.
    Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing. pp. 171–183. STOC 1983. ACM, New York (1983). http://doi.acm.org/10.1145/800061.808746
  2. 2.
    Berčič, K., Vidali, J.: DiscreteZOO. http://discretezoo.xyz/
  3. 3.
    Berčič, K., Vidali, J.: DiscreteZOO data repository. https://github.com/DiscreteZOO/DiscreteZOO-data
  4. 4.
    Berčič, K., Vidali, J.: DiscreteZOO documentation. https://github.com/DiscreteZOO/DiscreteZOO-docs
  5. 5.
    Berčič, K., Vidali, J.: DiscreteZOO SageMath interface repository. https://github.com/DiscreteZOO/DiscreteZOO-sage
  6. 6.
    Billey, S.C., Tenner, B.E.: Fingerprint databases for theorems. Not. Am. Math. Soc. 60(8), 1034–1039 (2013).  https://doi.org/10.1090/noti1029MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bouwer, I. (ed.): The Foster census. R. M. Foster’s census of connected symmetric trivalent graphs. Co-editors: Chernoff, W.W., Monson, B., Star, Z.: With a foreword by H. S. M. Coxeter and a biographical preface by S. Schuster. Charles Babbage Research Centre, Winnipeg (1988)Google Scholar
  8. 8.
    Chacon, S., Straub, B.: Pro Git (2014). https://git-scm.com/CrossRefGoogle Scholar
  9. 9.
    Conder, M., Dobcsányi, P., McKay, B., Royle, G.: The Extended Foster Census. http://www.cs.uwa.edu.au/gordon/remote/foster
  10. 10.
    Foster, R.M.: Geometrical circuits of electrical networks. Trans. Am. Inst. Electr. Eng. 51(2), 309–317 (1932).  https://doi.org/10.1109/T-AIEE.1932.5056068CrossRefGoogle Scholar
  11. 11.
    Junttila, T., Kaski, P.: Bliss: A Tool for Computing Automorphism Groups and Canonical Labelings of Graphs. http://www.tcs.hut.fi/Software/bliss/
  12. 12.
    Kholmatova, A.: Design Systems. Smashing Media AG (2017)Google Scholar
  13. 13.
    McKay, B.: Description of graph6, sparse6 and digraph6 encodings. http://users.cecs.anu.edu.au/~bdm/data/formats.txt
  14. 14.
    McKay, B.D., Piperno, A.: Practical graph isomorphism II. J. Symbolic Comput. 60, 94–112 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Norman, D.: The Design of Everyday Things. Revised and Expanded edn. Basic Books (2013)Google Scholar
  16. 16.
    OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences (2018). http://oeis.org
  17. 17.
    Potočnik, P., Spiga, P., Verret, G.: Cubic vertex-transitive graphs on up to \(1280\) vertices. J. Symbolic Comput. 50, 465–477 (2013).  https://doi.org/10.1016/j.jsc.2012.09.002
  18. 18.
  19. 19.
    Rubey, M., Stump, C., et al.: FindStat - The combinatorial statistics database (2017). http://www.FindStat.org
  20. 20.
    Tenner, B.E.: Database of permutation pattern avoidance. http://math.depaul.edu/bridget/patterns.html

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UNAMMoreliaMexico
  2. 2.University of LjubljanaLjubljanaSlovenia

Personalised recommendations