Paramotopy: Parameter Homotopies in Parallel

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)


Numerical algebraic geometry provides tools for approximating solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. This article describes Paramotopy, a parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated or manually provided mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space.



The authors appreciate the useful comments from several anonymous referees and Andrew Sommese as these have greatly contributed to the quality of this paper. The first author would also like to recognize the hospitality of Institut Mittag-Leffler and the Mathematical Biosciences Institute, as well as partial support from the NSF via award DMS-1719658.


  1. 1.
    Sommese, A., Morgan, A.: Coefficient-parameter polynomial continuation. Appl. Math. Comp. 29, 123–160 (1989)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific Publishing, Singapore (2005)CrossRefGoogle Scholar
  3. 3.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerical Solution of Polynomial Systems Using the Software Package Bertini. SIAM, Philadelphia (2013)Google Scholar
  4. 4.
    Bates, D., Hauenstein, J., Peterson, C., Sommese, A.: A numerical local dimension test for points on the solution set of a system of polynomial equations. SIAM J. Numer. Anal. 47(5), 3608–3623 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A.: Illustration of numerical algebraic methods for workspace estimation of cooperating robots after joint failure. In: 15th IASTED International Conference on Robotics and Applications, pp. 461–468 (2010)Google Scholar
  6. 6.
    He, Y.H., Mehta, D., Niemerg, M., Rummel, M., Valeanu, A.: Exploring the potential energy landscape over a large parameter-space. J. High Energy Phys. 2013(7), 1–29 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Newell, A.J.: Transition to superparamagnetism in chains of magnetosome crystals. Geochem. Geophys. Geosy. 10(11), Q11Z08 (2009)CrossRefGoogle Scholar
  8. 8.
    Rostalski, P., Fotiou, I.A., Bates, D.J., Beccuti, A.G., Morari, M.: Numerical algebraic geometry for optimal control applications. SIAM J Optimiz. 21(2), 417–437 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.: Bertini: software for numerical algebraic geometry (2006)Google Scholar
  10. 10.
    Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. (TOMS) 25(2), 251–276 (1999)CrossRefGoogle Scholar
  11. 11.
    Bates, D., Brake, D., Niemerg, M.: Paramotopy: parameter homotopies in parallel. (2018)
  12. 12.
    Bates, D., Hauenstein, J., Sommese, A., Wampler, C.: Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Stepsize control for path tracking. Contemp. Math. 496, 21–31 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J.: Efficient path tracking methods. Numer. Algorithms 58(4), 451–459 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wampler, C.W.: Bezout number calculations for multi-homogeneous polynomial systems. Appl. Math. Comput. 51(2), 143–157 (1992)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation methods. Handb. Numer. Anal. 11, 209–304 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theoret. Comput. Sci. 359, 111–122 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hauenstein, J., Wampler, C.: Isosingular sets and deflation. Found. Comput. Math. 13, 371–403 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Colorado State UniversityFort CollinsUSA
  2. 2.University of Wisconsin - Eau ClaireEau ClaireUSA
  3. 3.KnoxvilleUSA

Personalised recommendations