Inferring Safe Maude Programs with ÁTAME

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)


In this paper, we present ÁTAME, an assertion-based program specialization tool for the multi-paradigm language Maude. The program specializer ÁTAME takes as input a set \(\mathcal{A}\) of system assertions that model the expected program behavior plus a Maude program \(\mathcal{R}\) to be specialized that might violate some of the assertions in \(\mathcal{A}\). The outcome of the tool is a safe program refinement \(\mathcal{R}'\) of \(\mathcal{R}\) in which every computation is a good run, i.e., it satisfies the assertions in \(\mathcal{A}\). The specialization technique encoded in Open image in new window is fully automatic and ensures that no good run of \(\mathcal{R}\) is removed from \(\mathcal{R}'\), while the number of bad runs is reduced to zero. We demonstrate the tool capabilities by specializing an overly general nondeterministic dam controller to fulfill a safety policy given by a set of system assertions.


Program specialization Program adaptability Assertions Maude Rewriting logic 


  1. 1.
    Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Exploring conditional rewriting logic computations. J. Symbolic Comput. 69, 3–39 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alpuente, M., Ballis, D., Sapiña, J.: Static correction of maude programs with assertions. Technical report, Universitat Politècnica de València (2018).
  3. 3.
    Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial evaluation of order-sorted equational programs modulo axioms. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 3–20. Springer, Cham (2017). Scholar
  4. 4.
    Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude Manual (Version 2.7.1). Technical report, SRI International (2016).
  5. 5.
    Danvy, O., Glück, R., Thiemann, P. (eds.): Proceedings of the International Seminar on Partial Evaluation (Dagstuhl 1996). LNCS, vol. 1110. Springer, Heidelberg (1996). Scholar
  6. 6.
    Khoo, S.C., Shi, K.: Program adaptation via output-constraint specialization. Higher Order Symbolic Comput. 17(1), 93–128 (2004)CrossRefGoogle Scholar
  7. 7.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DSIC-ELPUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.DMIFUniversity of UdineUdineItaly

Personalised recommendations