Advertisement

Inferring Safe Maude Programs with ÁTAME

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)

Abstract

In this paper, we present ÁTAME, an assertion-based program specialization tool for the multi-paradigm language Maude. The program specializer ÁTAME takes as input a set \(\mathcal{A}\) of system assertions that model the expected program behavior plus a Maude program \(\mathcal{R}\) to be specialized that might violate some of the assertions in \(\mathcal{A}\). The outcome of the tool is a safe program refinement \(\mathcal{R}'\) of \(\mathcal{R}\) in which every computation is a good run, i.e., it satisfies the assertions in \(\mathcal{A}\). The specialization technique encoded in Open image in new window is fully automatic and ensures that no good run of \(\mathcal{R}\) is removed from \(\mathcal{R}'\), while the number of bad runs is reduced to zero. We demonstrate the tool capabilities by specializing an overly general nondeterministic dam controller to fulfill a safety policy given by a set of system assertions.

Keywords

Program specialization Program adaptability Assertions Maude Rewriting logic 

References

  1. 1.
    Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Exploring conditional rewriting logic computations. J. Symbolic Comput. 69, 3–39 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alpuente, M., Ballis, D., Sapiña, J.: Static correction of maude programs with assertions. Technical report, Universitat Politècnica de València (2018). http://hdl.handle.net/10251/100268
  3. 3.
    Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial evaluation of order-sorted equational programs modulo axioms. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 3–20. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63139-4_1CrossRefGoogle Scholar
  4. 4.
    Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude Manual (Version 2.7.1). Technical report, SRI International (2016). http://maude.cs.uiuc.edu/maude2-manual/
  5. 5.
    Danvy, O., Glück, R., Thiemann, P. (eds.): Proceedings of the International Seminar on Partial Evaluation (Dagstuhl 1996). LNCS, vol. 1110. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61580-6zbMATHGoogle Scholar
  6. 6.
    Khoo, S.C., Shi, K.: Program adaptation via output-constraint specialization. Higher Order Symbolic Comput. 17(1), 93–128 (2004)CrossRefGoogle Scholar
  7. 7.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DSIC-ELPUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.DMIFUniversity of UdineUdineItaly

Personalised recommendations