Plotting Planar Implicit Curves and Its Applications

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)

Abstract

We present a new method to plot planar implicit curve in a given box $$B \in {\mathbb {R}}^2$$. Based on analyzing the geometry of the level sets of the given function, following the points with local maximal (or minimal) curvatures on the level sets, we compute points on each components of the given function in box B and trace each component to plot the curve. We also used this method to find real zeros of bivariate function systems in a given box. The experiments shows that our implementation works well. It works for polynomials with degrees more than 10,000. It also works for non-polynomial case.

Keywords

Plotting Planar implicit curve Level sets Curvature Real solving Bivariate function systems

References

1. 1.
Arnon, D.S., Collins, G., McCallum, S.: Cylindrical algebraic decomposition, II: an adjacency algorithm for plane. SIAM J. Comput. 13(4), 878–889 (1984)
2. 2.
Berberich, E., et al.: Exacus: efficient and exact algorithms for curves and surfaces. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 155–166. Springer, Heidelberg (2005).
3. 3.
Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Algorithm 976: bertini real: numerical decomposition of real algebraic curves and surfaces. ACM Trans. Math. Softw. 44(1), 10 (2017)
4. 4.
Chen, F.L., Feng, Y., Kozak, J.: Tracing a plane algebraic curve. Appl. Math. J. Chin. Univ. 12(1), 15–24 (1997)
5. 5.
Cheng, J.-S., Lazard, S., Peñaranda, L., Pouget, M., Rouillier, F., Tsigaridas, E.: On the topology of the real algebraic plane curves. Math. Comput. Sci. 4, 113–117 (2010)
6. 6.
Cheng, J.-S., Wen, J., Zhang, W.: Level set sweeping method for bivariate function(s) and its applications, manuscript (2018)Google Scholar
7. 7.
Chandler, R.E.: A tracking algorithm for implicitly defined curves. IEEE Comput. Graphics Appl. 8(2), 83–89 (1988)
8. 8.
Christoforou, E., Mantzaflaris, A., Mourrain, B., Wintz, J.: Axl, a geometric modeler for semi-algebraic shapes. In: Proceeding of ICMS 2018 (2018)Google Scholar
9. 9.
Gao, X.S., Li, M.: Rational quadratic approximation to real algebraic curves. Comput. Aided Geom. Des. 21, 805–828 (2004)
10. 10.
González-Vega, L., Necula, I.: Efficient topology determination of implicitly defined algebraic plane curves. Comput. Aided Geom. Des. 19, 719–743 (2002)
11. 11.
Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005)
12. 12.
Gomes, A.J.P.: A continuation algorithm for planar implicit curves with singularities, Special Section on CAD/Graphics 2013. Comput. Graph. 38, 365–373 (2014)
13. 13.
Lien, J.-M., Sharma, V., Vegter, G., Yap, C.: Isotopic arrangement of simple curves: an exact numerical approach based on subdivision. In: Proceeding of International Congress on Mathematical Softwares (ICMS), Seoul (2014)Google Scholar
14. 14.
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of SIGGRAPH 1987. ACM Press (1987)
15. 15.
Liang, C., Mourrain, B., Pavone, J.P.: Subdivision methods for the topology of 2D and 3D implicit curves. In: Jüttler, B., Piene, R. (eds.) Geometric Modeling and Algebraic Geometry. Springer, Heidelberg (2008).
16. 16.
Lin, L., Yap, C.: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal isotopy approach. Discrete Comput. Geom. 45(4), 760–795 (2011). Special Issue: 25th Annual Symposium on Computational Geometry SOCG 2009
17. 17.
Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval methods for plotting algebraic curves. Comput. Aided Geom. Des. 19, 553–587 (2002)
18. 18.
Plantinga, S., Vegter, G.: Isotopic meshing of implicit surfaces. Vis. Comput. 23, 45–58 (2007)
19. 19.
Strzebonski, A.: Real root isolation for exp-log-arctan functions. J. Symbolic Comput. 47, 282–314 (2012)
20. 20.