Numerical Software to Compute Newton Polytopes

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)


We present our implementation of an algorithm which functions as a numerical oracle for the Newton polytope of a hypersurface in the Macaulay2 package NumericalNP.m2. To showcase this software, we investigate the Newton polytope of both a hypersurface coming from algebraic vision and the classical Lüroth invariant.


  1. 1.
    Bates, D.J., Gross, E., Leykin, A., Israel Rodriguez, J.: Bertini for Macaulay2 (2013)Google Scholar
  2. 2.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic geometry. Available at with permanent
  3. 3.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  4. 4.
    Bernstein, D.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brysiewicz, T.: Numerical computations of newton polytopes (2018).
  6. 6.
    Emiris, I.A., Fisikopoulos, V., Konaxis, C., Penaranda, L.: An oracle-based, output-sensitive algorithm for projections of resultant polytopes. Int. J. Comput. Geom. Appl. 23(04n05), 397 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry.
  8. 8.
    Hauenstein, J.D., Sommese, A.J.: Witness sets of projections. Appl. Math. Comput. 217(7), 3349–3354 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hauenstein, J.D., Sottile, F.: Newton polytopes and witness sets. Math. Comput. Sci. 8(2), 235–251 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Khovanskii, A.: Newton polyhedra (algebra and geometry). Amer. Math. Soc. Transl. 153(2) (1992)Google Scholar
  11. 11.
    Ponce, J., Sturmfels, B., Trager, M.: Congruences and concurrent lines in multi-view geometry. Adv. Appl. Math. 88, 62–91 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stein, W., et al.: Sage Mathematics Software (Version x.y.z). The Sage Development Team (2017).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations