Skip to main content

Mathematical Modelling of Phenotypic Selection Within Solid Tumours

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 126)

Abstract

We present a space- and phenotype-structured model of selection dynamics between cancer cells within a solid tumour. In the framework of this model, we combine formal analyses with numerical simulations to investigate in silico the role played by the spatial distribution of oxygen and therapeutic agents in mediating phenotypic selection of cancer cells. Numerical simulations are performed on the 3D geometry of an in vivo human hepatic tumour, which was imaged using computerised tomography. Our modelling extends our previous work in the area through the inclusion of multiple therapeutic agents, one that is cytostatic, whilst the other is cytotoxic. In agreement with our previous work, the results show that spatial inhomogeneities in oxygen and therapeutic agent concentrations, which emerge spontaneously in solid tumours, can promote the creation of distinct local niches and lead to the selection of different phenotypic variants within the same tumour. A novel conclusion we infer from the simulations and analysis is that, for the same total dose, therapeutic protocols based on a combination of cytotoxic and cytostatic agents can be more effective than therapeutic protocols relying solely on cytotoxic agents in reducing the number of viable cancer cells.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96415-7_20
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96415-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. J.D. Gordan, J.A. Bertout, C.-J. Hu, J.A. Diehl, M.C. Simon, Hif-2α promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11(4), 335–347 (2007)

    CrossRef  Google Scholar 

  2. C. Legendre, S. Avril, C. Guillet, E. Garcion, Low oxygen tension reverses antineoplastic effect of iron chelator deferasirox in human glioblastoma cells. BMC Cancer 16(1), 51 (2016)

    Google Scholar 

  3. M.C. Lloyd, J.J. Cunningham, M.M. Bui, R.J. Gillies, J.S. Brown, R.A. Gatenby, Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res. 76(11), 3136–3144 (2016)

    CrossRef  Google Scholar 

  4. T. Lorenzi, C. Venkataraman, A. Lorz, M.A. Chaplain, The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity. Preprint available from http://hdl.handle.net/10023/10685 (2017)

  5. A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame, Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol. 77(1), 1–22 (2015)

    CrossRef  MathSciNet  Google Scholar 

  6. L.M. Merlo, J.W. Pepper, B.J. Reid, C.C. Maley, Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6(12), 924–935 (2006)

    CrossRef  Google Scholar 

  7. S. Mirrahimi, B. Perthame, Asymptotic analysis of a selection model with space. J. de Mathématiques Pures et Appliquées 104(6), 1108–1118 (2015)

    CrossRef  MathSciNet  Google Scholar 

  8. S. Strese, M. Fryknäs, R. Larsson, J. Gullbo, Effects of hypoxia on human cancer cell line chemosensitivity. BMC Cancer 13(1), 1 (2013)

    Google Scholar 

  9. V. Walther, C.T. Hiley, D. Shibata, C. Swanton, P.E. Turner, C.C. Maley, Can oncology recapitulate paleontology? Lessons from species extinctions. Nat. Rev. Clin. Oncol. 12(5), 273–285 (2015)

    CrossRef  Google Scholar 

Download references

Acknowledgements

CV wishes to acknowledge partial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642866. AL was supported by King Abdullah University of Science and Technology (KAUST) baseline and start-up funds (BAS/1/1648-01-01 and BAS/1/1648-01-02). MAJC gratefully acknowledges support of EPSRC grant no. EP/N014642/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Venkataraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chaplain, M.A.J., Lorenzi, T., Lorz, A., Venkataraman, C. (2019). Mathematical Modelling of Phenotypic Selection Within Solid Tumours. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_20

Download citation