Sub-voxel Perfusion Modeling in Terms of Coupled 3d-1d Problem

  • Karl Erik Holter
  • Miroslav Kuchta
  • Kent-André MardalEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


We study perfusion by a multiscale model coupling diffusion in the tissue and diffusion along the one-dimensional segments representing the vasculature. We propose a block-diagonal preconditioner for the model equations and demonstrate its robustness by numerical experiments. We compare our model to a macroscale model by Tofts [Modelling in DCE MRI, 2012].


  1. 1.
    L. Cattaneo, P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments. Int. J. Numer. Methods Biomed. Eng. 30(11), 1347–1371 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Cattaneo, P. Zunino, Numerical investigation of convergence rates for the FEM approximation of 3D-1D coupled problems, in Numerical Mathematics and Advanced Applications-ENUMATH 2013 (Springer, Berlin, 2015), pp. 727–734Google Scholar
  3. 3.
    S.J. Chapman, R.J. Shipley, R. Jawad, Multiscale modeling of fluid transport in tumors. Bull. Math. Biol. 70(8), 2334 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. D’Angelo, Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one-and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C. D’Angelo, A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations: application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(8), 1481–1504 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Q. Fang, S. Sakadžić, L. Ruvinskaya, A. Devor, A.M. Dale, D.A. Boas, Oxygen advection and diffusion in a three dimensional vascular anatomical network. Opt. Express 16(22), 17530 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Goldman, A.S. Popel, A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J. Theor. Biol. 206(2), 181–194 (2000)CrossRefGoogle Scholar
  8. 8.
    C. Jack, Cerebrovascular and cardiovascular pathology in Alzheimer’s disease. Int. Rev. Neurobiol. 84, 35–48 (2009)CrossRefGoogle Scholar
  9. 9.
    T. Koppl, B. Wohlmuth, Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52(4), 1753–1769 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Kuchta, K.-A. Mardal, M. Mortensen, On preconditioning saddle point systems with trace constraints coupling 3D and 1D domains–applications to matching and nonmatching FEM discretizations. arXiv:1612.03574 (2016, preprint)Google Scholar
  11. 11.
    M. Kuchta, M. Nordaas, J.C. Verschaeve, M. Mortensen, K.-A. Mardal, Preconditioners for saddle point systems with trace constraints coupling 2D and 1D domains. SIAM J. Sci. Comput. 38(6), B962–B987 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Linninger, I. Gould, T. Marinnan, C.-Y. Hsu, M. Chojecki, A. Alaraj, Cerebral microcirculation and oxygen tension in the human secondary cortex. Ann. Biomed. Eng. 41(11), 2264–2284 (2013)CrossRefGoogle Scholar
  13. 13.
    K.-A. Mardal, R. Winther, Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 98(2), 305–327 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    K.-A. Mardal, R. Winther, Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18(1), 1–40 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Nabil, P. Decuzzi, P. Zunino, Modelling mass and heat transfer in nano-based cancer hyperthermia. R. Soc. Open Sci. 2(10), 150447 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Sakadžić, E.T. Mandeville, L. Gagnon, J.J. Musacchia, M.A. Yaseen, M.A. Yucel, J. Lefebvre, F. Lesage, A.M. Dale, K. Eikermann-Haerter, et al., Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat. Commun. 5, 5734 (2014)CrossRefGoogle Scholar
  17. 17.
    T. Secomb, R. Hsu, N. Beamer, B. Coull, Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia. Microcirculation 7(4), 237–247 (2000)CrossRefGoogle Scholar
  18. 18.
    T.W. Secomb, R. Hsu, E.Y. Park, M.W. Dewhirst, Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann. Biomed. Eng. 32(11), 1519–1529 (2004)CrossRefGoogle Scholar
  19. 19.
    P.S. Tofts, T1-weighted DCE imaging concepts: modelling, acquisition and analysis. Signal 500(450), 400 (2010)Google Scholar
  20. 20.
    N. Zhang, L. Zhang, B. Qiu, L. Meng, X. Wang, B.L. Hou, Correlation of volume transfer coefficient K trans with histopathologic grades of gliomas. J. Magn. Reson. Imaging 36(2), 355–363 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karl Erik Holter
    • 1
    • 2
  • Miroslav Kuchta
    • 3
  • Kent-André Mardal
    • 3
    • 4
    Email author
  1. 1.University of OsloDepartment of InformaticsOsloNorway
  2. 2.Simula Research LaboratoryFornebuNorway
  3. 3.University of OsloDepartment of MathematicsOsloNorway
  4. 4.Simula Research LaboratoryFornebuNorway

Personalised recommendations