Skip to main content

Trefftz-Discontinuous Galerkin Approach for Solving Elastodynamic Problem

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 126))

Included in the following conference series:

  • 1673 Accesses

Abstract

Methods based on Discontinuous Finite Element approximation (DG FEM) are basically well-adapted to specifics of wave propagation problems in complex media, due to their numerical accuracy and flexibility. However, they still lack of computational efficiency, by reason of the high number of degrees of freedom required for simulations.

The Trefftz-DG solution methodology investigated in this work is based on a formulation which is set only at the boundaries of the mesh. It is a consequence of the choice of test functions that are local solutions of the problem. It owns the important feature of involving a space-time approximation which requires using elements defined in the space-time domain.

Herein, we address the Trefftz-DG solution of the Elastodynamic System. We establish its well-posedness which is based on mesh-dependent norms. It is worth noting that we employ basis functions which are space-time polynomial. Some numerical experiments illustrate the proper functioning of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. E. Trefftz, Ein Gegenstuck zum Ritzschen Verfahren, in Proceedings of the 2nd International Congress of Applied Mechanics, Zurich (1926), pp. 131–137

    Google Scholar 

  2. J. Jirousek, Basis for development of large finite elements locally satisfying all field equations. Comput. Methods Appl. Mech. Eng. 14(1), 65–92 (1978)

    Article  Google Scholar 

  3. O.C. Zienkiewic, Trefftz type approximation and the generalized finite element method - history and development. Comput. Assist. Mech. Eng. Sci. 4, 305–316 (1997)

    Google Scholar 

  4. C. Farhat, I. Harari, U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192(11), 1389–1419 (2003)

    Article  MathSciNet  Google Scholar 

  5. R. Tezaur, C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Methods Eng. 66(5), 796–815 (2006)

    Article  MathSciNet  Google Scholar 

  6. G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225(2), 1961–1984 (2007)

    Article  MathSciNet  Google Scholar 

  7. Z. Badics, Trefftz-discontinuous Galerkin and finite element multi-solver technique for modeling time-harmonic EM problems with high-conductivity regions. IEEE Trans. Magn. 50(2), 401–404 (2014)

    Article  Google Scholar 

  8. R. Hiptmair, A. Moiola, I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49(1), 264–284 (2011)

    Article  MathSciNet  Google Scholar 

  9. A. Moiola, R. Hiptmair, I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62(5), 809–837 (2011)

    Article  MathSciNet  Google Scholar 

  10. R. Hiptmair, A. Moiola, I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82(281), 247–268 (2013)

    Article  MathSciNet  Google Scholar 

  11. S. Petersen, C. Farhat, R. Tezaur, A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain. Int. J. Numer. Methods Eng. 78(3), 275–295 (2009)

    Article  MathSciNet  Google Scholar 

  12. F. Kretzschmar, S.M. Schnepp, I. Tsukerman, T. Weiland, Discontinuous Galerkin methods with Trefftz approximations. J. Comput. Appl. Math. 270, 211–222 (2014)

    Article  MathSciNet  Google Scholar 

  13. H. Egger, F. Kretzschmar, S.M. Schnepp, T. Weiland, A space-time discontinuous Galerkin Trefftz method for time dependent Maxwell’s equations. SIAM J. Sci. Comput. 37(5), B689–B711 (2015)

    Article  MathSciNet  Google Scholar 

  14. F. Kretzschmar, A. Moiola, I. Perugia, S. Schnepp, A priori error analysis of space–time Trefftz discontinuous Galerkin methods for wave problems. IMA J. Numer. Anal. 36(4), 1599–1635 (2015)

    Article  MathSciNet  Google Scholar 

  15. D. Wang, R. Tezaur, C. Farhat, A hybrid discontinuous in space and time Galerkin method for wave propagation problems. Int. J. Numer. Methods Eng. 99(4), 263–289 (2014)

    Article  MathSciNet  Google Scholar 

  16. L. Banjai, E. Georgoulis, O. Lijoka, A Trefftz polynomial space-time discontinuous Galerkin method for the second order wave equation. SIAM J. Numer. Anal. 55(1), 63–86 (2017)

    Article  MathSciNet  Google Scholar 

  17. A. Moiola, I. Perugia, A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math. 138(2), 389–435 (2018)

    Article  MathSciNet  Google Scholar 

  18. P. Le Tallec, Modélisation et calcul des milieux continus (Editions Ecole Polytechnique, Palaiseau, 2009)

    Google Scholar 

  19. J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Springer Science & Business Media, Berlin, 2007)

    MATH  Google Scholar 

  20. H. Barucq, H. Calandra, J. Diaz, E. Shishenina, Space-time Trefftz - discontinuous Galerkin approximation for elasto-acoustics. Inria Bordeaux Sud-Ouest, LMAP CNRS, Total EP, RR-9104 (2017)

    Google Scholar 

  21. A. Maciag, J. Wauer, Solution of the two-dimensional wave equation by using wave polynomials. J. Eng. Math. 51(4), 339–350 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Inria—Total S.A. strategic action “Depth Imaging Partnership” (http://dip.inria.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Shishenina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barucq, H., Calandra, H., Diaz, J., Shishenina, E. (2019). Trefftz-Discontinuous Galerkin Approach for Solving Elastodynamic Problem. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_11

Download citation

Publish with us

Policies and ethics