Skip to main content

Inherited Metabolic Disorders

  • Chapter
  • First Online:
Book cover Pediatric Hepatology and Liver Transplantation
  • 1705 Accesses

Abstract

Paediatric hepatologist has become increasingly involved in management of IMDs due to their better diagnostics, considerable clinical overlap with liver diseases and possibility of LT as long-term treatment option. This overview presents some clinical background for the commonest of the IMDs potentially managed by LT but also attempts to assess risk/benefit ratios in specific contexts. The potential benefits of minimising developmental delay, which is a common feature of medically treated IMDs, represent a strong drive to performing these elective operations earlier in childhood. However, surgical and perioperative issues need to be borne in mind in order to optimise outcome for this unique group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saudubray JM, Nassogne MC, de Lonlay P, Touati G. Clinical approach to inherited metabolic disorders in neonates: an overview. Semin Neonatol. 2002;7:3–15.

    Article  CAS  Google Scholar 

  2. Fellman V, Rapola J, Pihko H, et al. Iron-overload disease in infants involving fetal growth retardation, lactic acidosis, liver haemosiderosis, and amino aciduria. Lancet. 1998;351:490–3.

    Article  CAS  Google Scholar 

  3. Jaeken J, Matthijs G, Saudubray JM, et al. Phosphomannomutase isomerase deficiency: a carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation. Am J Hum Genet. 1998;62:1535–9.

    Article  CAS  Google Scholar 

  4. Hadzic N, Verkade HJ. The changing spectrum of neonatal hepatitis. J Pediatr Gastroenterol Nutr. 2016;63:316–9.

    Article  Google Scholar 

  5. Santra S, Hendriksz C. How to use acylcarnitine profiles to help diagnose inborn errors of metabolism. Arch Dis Child Educ Pract Ed. 2010;95:151–6. https://doi.org/10.1136/adc.2009.174342.2010.

    Article  CAS  PubMed  Google Scholar 

  6. Oishi K, Arnon R, Wasserstein MP, Diaz GA. Liver transplantation for pediatric inherited metabolic disorders: considerations for indications, complications, perioperative management. Pediatr Transplant. 2016;20:756–69. https://doi.org/10.1111/petr.12741.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Imbard A, Garcia Segarra N, Tardieu M, Broué P, Bouchereau J, Pichard S, de Baulny HO, Slama A, Mussini C, Touati G, Danjoux M, Gaignard P, Vogel H, Labarthe F, Schiff M, Benoist JF. Long-term liver disease in methylmalonic and propionic acidemias. Mol Genet Metab. 2018;123(4):433–40.

    Article  CAS  Google Scholar 

  8. Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, Karall D, Martinelli D, Crespo PS, Santer R, Servais A, Valayannopoulos V, Lindner M, Rubio V, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.

    Article  Google Scholar 

  9. Yu L, Rayhill SC, Hsu EK, Landis CS. Liver transplantation for urea cycle disorders: analysis of the united network for organ sharing database. Transplant Proc. 2015;47(8):2413–8.

    Article  CAS  Google Scholar 

  10. Ah Mew N, Krivitzky L, McCarter R, Batshaw M, Tuchman M. Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ. J Pediatr. 2013;162:324–9.e1. https://doi.org/10.1016/j.jpeds.2012.06.065.

    Article  CAS  PubMed  Google Scholar 

  11. Yankol Y, Mecit N, Kanmaz T, Acarli K, Kalayoglu M. Argininosuccinic aciduria—a rare indication for liver transplant: report of two cases. Exp Clin Transplant. 2017;15(5):581–4.

    PubMed  Google Scholar 

  12. Robberecht E, Maesen S, Jonckheere A, Van Biervliet S, Carton D. Successful liver transplantation for argininosuccinate lyase deficiency (ASLD). J Inherit Metab Dis. 2006;29(1):184–5.

    Article  CAS  Google Scholar 

  13. Kido J, Matsumoto S, Momosaki K, Sakamoto R, Mitsubuchi H, Endo F, Nakamura K. Liver transplantation may prevent neurodevelopmental deterioration in high-risk patients with urea cycle disorders. Pediatr Transplant. 2017;21(6).

    Article  Google Scholar 

  14. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002;109(6):999–1008.

    Article  Google Scholar 

  15. Díaz VM, Camarena C, de la Vega Á, Martínez-Pardo M, Díaz C, López M, Hernández F, Andrés A, Jara P. Liver transplantation for classical maple syrup urine disease: long-term follow-up. J Pediatr Gastroenterol Nutr. 2014;59(5):636–9.

    Article  Google Scholar 

  16. Celik N, Squires RH, Vockley J, Sindhi R, Mazariegos G. Liver transplantation for maple syrup urine disease: a global domino effect. Pediatr Transplant. 2016;20(3):350–1.

    Article  Google Scholar 

  17. Fraser JL, Venditti CP. Methylmalonic and propionic acidemias: clinical management update. Curr Opin Pediatr. 2016;28:682–93.

    Article  CAS  Google Scholar 

  18. Kölker S, Valayannopoulos V, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Boy SP, Rasmussen MB, Burgard P, Chabrol B, Chakrapani A, Chapman K, Cortès I Saladelafont E, Couce ML, de Meirleir L, Dobbelaere D, Furlan F, Gleich F, González MJ, Gradowska W, Grünewald S, Honzik T, Hörster F, Ioannou H, Jalan A, Häberle J, Haege G, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, Murphy E, de Baulny HO, Ortez C, Pedrón CC, Pintos-Morell G, Pena-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Lund AM, Garcia-Cazorla A. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38(6):1059–74.

    Article  Google Scholar 

  19. Vara R, Turner C, Mundy H, Heaton ND, Rela M, Mieli-Vergani G, Champion M, Hadzic N. Liver transplantation for propionic acidaemia in children. Liver Transpl. 2011;17:661–7.

    Article  Google Scholar 

  20. Niemi AK, Kim IK, Krueger CE, Cowan TM, Baugh N, Farrell R, Bonham CA, Concepcion W, Esquivel CO, Enns GM. Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation. J Pediatr. 2015;166(6):1455–61.

    Article  Google Scholar 

  21. Rajakumar A, Kaliamoorthy I, Reddy MS, Rela M. Anaesthetic considerations for liver transplantation in propionic acidemia. Indian J Anaesth. 2016;60(1):50–4.

    Article  CAS  Google Scholar 

  22. Sloan JL, Manoli I, Venditti CP. Liver or combined liver-kidney transplantation for patients with isolated methylmalonic acidemia: who and when? J Pediatr. 2015;166(6):1346–50.

    Article  Google Scholar 

  23. Weinstein DA, Steuerwald U, De Souza CFM, Derks TGJ. Inborn errors of metabolism with hypoglycemia: glycogen storage diseases and inherited disorders of gluconeogenesis. Pediatr Clin North Am. 2018;65(2):247–65.

    Article  Google Scholar 

  24. Bhattacharya K. Investigation and management of the hepatic glycogen storage diseases. Transl Pediatr. 2015;4(3):240–8.

    PubMed  PubMed Central  Google Scholar 

  25. Szymańska E, Szymańska S, Truszkowska G, Ciara E, Pronicki M, Shin YS, Podskarbi T, Kępka A, Śpiewak M, Płoski R, Bilińska ZT, Rokicki D. Variable clinical presentation of glycogen storage disease type IV: from severe hepatosplenomegaly to cardiac insufficiency. Some discrepancies in genetic and biochemical abnormalities. Arch Med Sci. 2018;14(1):237–47.

    Article  Google Scholar 

  26. Davis MK, Weinstein DA. Liver transplantation in children with glycogen storage disease: controversies and evaluation of the risk/benefit of this procedure. Pediatr Transplant. 2008;12(2):137–45.

    Article  Google Scholar 

  27. De Greef E, Christodoulou J, Alexander IE, Shun A, O’Loughlin EV, Thorburn DR, Jermyn V, Stormon MO. Mitochondrial respiratory chain hepatopathies: role of liver transplantation. A case series of five patients. JIMD Rep. 2012;4:5–11.

    Article  Google Scholar 

  28. Dubern B, Broue P, Dubuisson C, Cormier-Daire V, Habes D, Chardot C, Devictor D, Munnich A, Bernard O. Orthotopic liver transplantation for mitochondrial respiratory chain disorders: a study of 5 children. Transplantation. 2001;71(5):633–7.

    Article  CAS  Google Scholar 

  29. Mazariegos G, Shneider B, Burton B, Fox IJ, Hadzic N, Kishnani P, Morton DH, McIntire S, Sokol RJ, Summar M, White D, Chavanon V, Vockley J. Liver transplantation for pediatric metabolic disease. Mol Genet Metab. 2014;111:418–27. https://doi.org/10.1016/j.ymgme.

    Article  CAS  PubMed  Google Scholar 

  30. McKiernan PJ. Liver transplantation and cell therapies for inborn errors of metabolism. J Inherit Metab Dis. 2013;36:675–80. https://doi.org/10.1007/s10545-012-9581-z.

    Article  CAS  PubMed  Google Scholar 

  31. Fagiuoli S, Daina E, D’Antiga L, Coledan M, Remuzzi G. Monogenic diseases that can be cured by liver transplantation. J Hepatol. 2013;59:595–612.

    Article  Google Scholar 

  32. Arnon R, Kerkar N, Davis MK, Anand R, Yin W, González-Peralta RP, SPLIT Research Group. Liver transplantation in children with metabolic diseases: the studies of pediatric liver transplantation experience. Pediatr Transplant. 2010;14:796–805. https://doi.org/10.1111/j.1399-3046.2010.01339.x.

    Article  PubMed  Google Scholar 

  33. Rahayatri TH, Uchida H, Sasaki K, et al. Hyperammonemia in ornithine transcarbamylase-deficient recipients following living donor liver transplantation from heterozygous carrier donors. Pediatr Transplant. 2017;21:e12848. https://doi.org/10.1111/petr.12848.

    Article  CAS  Google Scholar 

  34. Feier F, Schwartz IV, Benkert AR, Seda Neto J, Miura I, Chapchap P, da Fonseca EA, Vieira S, Zanotelli ML, Pinto e Vairo F, Camelo JS Jr, Margutti AV, Mazariegos GV, Puffenberger EG, Strauss KA. Living related versus deceased donor liver transplantation for maple syrup urine disease. Mol Genet Metab. 2016;117:336–43. https://doi.org/10.1016/j.ymgme.2016.01.005. Epub 2016 Jan 12.

    Article  CAS  PubMed  Google Scholar 

  35. Kasahara M, Sakamoto S, Horikawa R, et al. Living donor liver transplantation for pediatric patients with metabolic disorders: the Japanese multicenter registry. Pediatr Transplant. 2014;18:6–15.

    Article  Google Scholar 

  36. Reddy MS, Rajalingam R, Rela M. Revisiting APOLT for metabolic liver disease: a new look at an old idea. Transplantation. 2017;101:260–6. https://doi.org/10.1097/TP.0000000000001472.

    Article  PubMed  Google Scholar 

  37. Rela M, Bharathan A, Palaniappan K, Cherian PT, Reddy MS. Portal flow modulation in auxiliary partial orthotopic liver transplantation. Pediatr Transplant. 2015;19:255–60. https://doi.org/10.1111/petr.12436.

    Article  PubMed  Google Scholar 

  38. Dowman JK, Gunson BK, Mirza DF, Bramhall SR, Badminton MN, Newsome PN, UK Liver Selection and Allocation Working Party. Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis. Liver Transpl. 2012;18:195–200. https://doi.org/10.1002/lt.22345.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Raby RB, Ward JC, Herrod HG. Propionic acidaemia and immunodeficiency. J Inherit Metab Dis. 1994;17:250–1.

    Article  CAS  Google Scholar 

  40. Chen CY, Liu C, Lin NC, Tsai HL, Loong CC, Hsia CY. Exchange of partial liver transplantation between children with different non-cirrhotic metabolic liver diseases: how do we arrive there? Ann Transplant. 2016;21:525–30.

    Article  Google Scholar 

  41. Govil S, Shanmugam NP, Reddy MS, Narasimhan G, Rela M. A metabolic chimera: two defective genotypes make a normal phenotype. Liver Transpl. 2015;21:1453–4. https://doi.org/10.1002/lt.24202.

    Article  PubMed  Google Scholar 

  42. Mazariegos GV, Morton DH, Sindhi R, Soltys K, Nayyar N, Bond G, Shellmer D, Shneider B, Vockley J, Strauss KA. Liver transplantation for classical maple syrup urine disease: long-term follow-up in 37 patients and comparative United Network for Organ Sharing experience. J Pediatr. 2012;160:116–21.e1. https://doi.org/10.1016/j.jpeds.2011.06.033.

    Article  PubMed  Google Scholar 

  43. Hussein MH, Hashimoto T, Suzuki T, Daoud GA, Goto T, Nakajima Y, Kato T, Hibi M, Tomishige H, Hara F, Kato S, Kakita H, Kamei M, Ito T, Kato I, Sugioka A, Togari H. Children undergoing liver transplantation for treatment of inherited metabolic diseases are prone to higher oxidative stress, complement activity and transforming growth factor-β1. Ann Transplant. 2013;18:63–8. https://doi.org/10.12659/AOT.883820.

    Article  CAS  PubMed  Google Scholar 

  44. Strauss KA, Mazariegos GV, Sindhi R, Squires R, Finegold DN, Vockley G, Robinson DL, Hendrickson C, Virji M, Cropcho L, Puffenberger EG, McGhee W, Seward LM, Morton DH. Elective liver transplantation for the treatment of classical maple syrup urine disease. Am J Transplant. 2006;6:557–64.

    Article  CAS  Google Scholar 

  45. Shellmer DA, DeVito Dabbs A, Dew MA, Noll RB, Feldman H, Strauss KA, Morton DH, Vockley J, Mazariegos GV. Cognitive and adaptive functioning after liver transplantation for maple syrup urine disease: a case series. Pediatr Transplant. 2011;15:58–64. https://doi.org/10.1111/j.1399-3046.2010.01411.x.

    Article  CAS  PubMed  Google Scholar 

  46. Romano S, Valayannopoulos V, Touati G, Jais JP, Rabier D, de Keyzer Y, Bonnet D, de Lonlay P. Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr. 2010;156:128–34. https://doi.org/10.1016/j.jpeds.2009.07.002.

    Article  PubMed  Google Scholar 

  47. Bartlett DC, Preece MA, Holme E, Lloyd C, Newsome PN, McKiernan PJ. Plasma succinylacetone is persistently raised after liver transplantation in tyrosinaemia type 1. J Inherit Metab Dis. 2013;36:15–20. https://doi.org/10.1007/s10545-012-9482-1. Epub 2012 Mar 29.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedim Hadzic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadzic, N., Vara, R. (2019). Inherited Metabolic Disorders. In: D'Antiga, L. (eds) Pediatric Hepatology and Liver Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-96400-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96400-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96399-0

  • Online ISBN: 978-3-319-96400-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics