Skip to main content

Pointing Errors in Non-metric Virtual Environments

  • Conference paper
  • First Online:
Spatial Cognition XI (Spatial Cognition 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11034))

Included in the following conference series:

Abstract

There have been suggestions that human navigation may depend on representations that have no metric, Euclidean interpretation but that hypothesis remains contentious. An alternative is that observers build a consistent 3D representation of space. Using immersive virtual reality, we measured the ability of observers to point to targets in mazes that had zero, one or three ‘wormholes’ – regions where the maze changed in configuration (invisibly). In one model, we allowed the configuration of the maze to vary to best explain the pointing data; in a second model we also allowed the local reference frame to be rotated through 90, 180 or 270 degrees. The latter model outperformed the former in the wormhole conditions, inconsistent with a Euclidean cognitive map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallistel, C.: The Organization of Learning. The MIT Press, Cambridge (1990)

    Google Scholar 

  2. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University Press, Oxford (1978)

    Google Scholar 

  3. Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948)

    Article  Google Scholar 

  4. Meilinger, T., Strickrodt, M., Bülthoff, H.H.: Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition 155, 77–95 (2016)

    Article  Google Scholar 

  5. Warren, W.H., Rothman, D.B., Schnapp, B.H., Ericson, J.D.: Wormholes in virtual space: from cognitive maps to cognitive graphs. Cognition 166, 152–163 (2017)

    Article  Google Scholar 

  6. Gillner, S., Mallot, H.A.: Navigation and acquisition of spatial knowledge in a virtual maze. J. Cogn. Neurosci. 10, 445–463 (1998)

    Article  Google Scholar 

  7. Foo, P., Warren, W.H., Duchon, A., Tarr, M.J.: Do humans integrate routes into a cognitive map? Map - versus landmark-based navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 31, 195–215 (2005)

    Article  Google Scholar 

  8. Chrastil, E.R., Warren, W.H.: From cognitive maps to cognitive graphs. PLoS One. 9, e112544 (2014)

    Article  Google Scholar 

  9. Byrne, R.W.: Memory for urban geography. Q. J. Exp. Psychol. 31, 147–154 (1979)

    Article  Google Scholar 

  10. Tversky, B.: Distortions in cognitive maps. Geoforum 23, 131–138 (1992)

    Article  Google Scholar 

  11. Chrastil, E.R., Warren, W.H.: Active and passive spatial learning in human navigation: acquisition of graph knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 41, 1162–1178 (2015)

    Article  Google Scholar 

  12. Ishikawa, T., Montello, D.R.: Spatial knowledge acquisition from direct experience in the environment: individual differences in the development of metric knowledge and the integration of separately learned places. Cogn. Psychol. 52, 93–129 (2006)

    Article  Google Scholar 

  13. Meilinger, T., Riecke, B.E., Bülthoff, H.H.: Local and global reference frames for environmental spaces. Q. J. Exp. Psychol. 67, 542–569 (2014)

    Article  Google Scholar 

  14. Moar, I., Bower, G.H.: Inconsistency in spatial knowledge. Mem. Cognit. 11, 107–113 (1983)

    Article  Google Scholar 

  15. Poucet, B.: Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol. Rev. 100, 163–182 (1993)

    Article  Google Scholar 

  16. Kuipers, B., Byun, Y.-T.: A robot exploration and mapping strategy based on a semantic hierachy of spatial representations. J. Robot. Auton. Syst. 8, 47–63 (1991)

    Article  Google Scholar 

  17. Kuipers, B., Tecuci, D.G., Stankiewicz, B.J.: The skeleton in the cognitive map: a computational and empirical exploration. Environ. Behav. 35, 81–106 (2003)

    Article  Google Scholar 

  18. Schultheis, H., Bertel, S., Barkowsky, T.: Modeling mental spatial reasoning about cardinal directions. Cogn. Sci. 38, 1521–1561 (2014)

    Article  Google Scholar 

  19. Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Auton. Robots. 5, 111–125 (1998)

    Article  Google Scholar 

  20. Cheeseman, J.F., Millar, C.D., Greggers, U., Lehmann, K., Pawley, M.D.M., Gallistel, C.R., Warman, G.R., Menzel, R.: Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc. Natl. Acad. Sci. 111, 8949–8954 (2014)

    Article  Google Scholar 

  21. Cheeseman, J.F., et al.: The cognitive map hypothesis remains the best interpretation of the data in honeybee navigation. Proc. Natl. Acad. Sci. 111, E4398 (2014). Reply to Cheung et al.

    Article  Google Scholar 

  22. Cheung, A., et al.: Still no convincing evidence for cognitive map use by honeybees. Proc. Natl. Acad. Sci. 111, E4396–E4397 (2014). Fig. 1

    Article  Google Scholar 

  23. Stachenfeld, K.L., Botvinick, M.M., Gershman, S.J.: The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017)

    Article  Google Scholar 

  24. Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.): Spatial Cognition VI. LNCS (LNAI), vol. 5248. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87601-4

    Book  Google Scholar 

  25. Mallot, H.A., Basten, K.: Embodied spatial cognition: biological and artificial systems. Image Vis. Comput. 27, 1658–1670 (2009)

    Article  Google Scholar 

  26. Montello, D.R.: Scale and multiple psychologies of space. In: Frank, A.U., Campari, I. (eds.) COSIT 1993. LNCS, vol. 716, pp. 312–321. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57207-4_21

    Chapter  Google Scholar 

  27. Kluss, T., Marsh, W.E., Zetzsche, C., Schill, K.: Representation of impossible worlds in the cognitive map. Cogn. Process. 16, 271–276 (2015)

    Article  Google Scholar 

  28. Vasylevska, K., Kaufmann, H.: Towards efficient spatial compression in self-overlapping virtual environments. In: Proceedings of 2017 IEEE Symposium on 3D User Interfaces, 3DUI 2017, pp. 12–21 (2017)

    Google Scholar 

  29. Zetzsche, C., Wolter, J., Galbraith, C., Schill, K.: Representation of space: image-like or sensorimotor? Spat. Vis. 22, 409–424 (2009)

    Article  Google Scholar 

  30. Svarverud, E., Gilson, S., Glennerster, A.: A demonstration of “broken” visual space. PLoS One. 7, e33782 (2012)

    Article  Google Scholar 

  31. Glennerster, A.: The time course of 2-D shape discrimination in random dot stereograms. Vis. Res. 36, 1955–1968 (1996)

    Article  Google Scholar 

  32. Johnston, E.B.: Systematic distortions of shape from stereopsis. Vis. Res. 31, 1351–1360 (1991)

    Article  Google Scholar 

  33. Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L., Doumen, M.J.A., Todd, J.T.: Exocentric pointing in depth. Vis. Res. 48, 716–723 (2008)

    Article  Google Scholar 

  34. Ogle, K.: Researches in Binocular Vision (1950)

    Google Scholar 

  35. McNamara, T.P., Diwadkar, V.A.: Symmetry and asymmetry of human spatial memory. Cogn. Psychol. 34, 160–190 (1997)

    Article  Google Scholar 

  36. McNamara, T.P.: Mental representations of spatial relations. Cogn. Psychol. 18, 87–121 (1986)

    Article  Google Scholar 

  37. Foo, P., Duchon, A., Warren, W.H., Tarr, M.J.: Humans do not switch between path knowledge and landmarks when learning a new environment. Psychol. Res. 71, 240–251 (2007)

    Article  Google Scholar 

  38. Tittle, J.S., Todd, J.T., Perotti, V.J., Norman, J.F.: Systematic distortion of perceived three-dimensional structure from motion and binocular stereopsis. J. Exp. Psychol. Hum. Percept. Perform. 21, 663–678 (1995)

    Article  Google Scholar 

  39. Koenderink, J.J., van Doorn, A.J.: Affine structure from motion. J. Opt. Soc. Am. A 8, 377 (1991)

    Article  Google Scholar 

  40. Glennerster, A., Rogers, B.J., Bradshaw, M.F.: Stereoscopic depth constancy depends on the subject’s task. Vis. Res. 36, 3441–3456 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by EPSRC/Dstl grant EP/N019423/1.

Supplementary Information. Additional figures, movies and raw data are available at: http://www.glennersterlab.com/MuryyGlennerster2018_SupplementaryInfo.zip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Muryy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muryy, A., Glennerster, A. (2018). Pointing Errors in Non-metric Virtual Environments. In: Creem-Regehr, S., Schöning, J., Klippel, A. (eds) Spatial Cognition XI. Spatial Cognition 2018. Lecture Notes in Computer Science(), vol 11034. Springer, Cham. https://doi.org/10.1007/978-3-319-96385-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96385-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96384-6

  • Online ISBN: 978-3-319-96385-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics