The Invisible Maze Task (IMT): Interactive Exploration of Sparse Virtual Environments to Investigate Action-Driven Formation of Spatial Representations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11034)


The neuroscientific study of human navigation has been constrained by the prerequisite of traditional brain imaging studies that require participants to remain stationary. Such imaging approaches neglect a central component that characterizes navigation - the multisensory experience of self-movement. Navigation by active movement through space combines multisensory perception with internally generated self-motion cues. We investigated the spatial microgenesis during free ambulatory exploration of interactive sparse virtual environments using motion capture synchronized to high resolution electroencephalographic (EEG) data as well AS psychometric and self-report measures. In such environments, map-like allocentric representations must be constructed out of transient, egocentric first-person perspective 3-D spatial information. Considering individual differences of spatial learning ability, we studied if changes in exploration behavior coincide with spatial learning of an environment. To this end, we analyzed the quality of sketch maps (a description of spatial learning) that were produced after repeated learning trials for differently complex maze environments. We observed significant changes in active exploration behavior from the first to the last exploration of a maze: a decrease in time spent in the maze predicted an increase in subsequent sketch map quality. Furthermore, individual differences in spatial abilities as well as differences in the level of experienced immersion had an impact on the quality of spatial learning. Our results demonstrate converging evidence of observable behavioral changes associated with spatial learning in a framework that allows the study of cortical dynamics of navigation.


Invisible Maze Task Spatial navigation Active exploration Virtual reality Interactive environments 



This research was supported by a grant from the German Federal Ministry of Education and Research (01GQ1511) to KG and a grant from the US National Science Foundation (1516107) to SM.


  1. 1.
    Arnold, A.E.G.F., Burles, F., Krivoruchko, T., Liu, I., Rey, C.D., Levy, R.M., Iaria, G.: Cognitive mapping in humans and its relationship to other orientation skills. Exp. Brain Res. 224(3), 359–372 (2013)CrossRefGoogle Scholar
  2. 2.
    Billinghurst, M., Weghorst, S.: The use of sketch maps to measure cognitive maps of virtual environments. In: Proceedings of the Virtual Reality Annual International Symposium (VRAIS 1995), p. 40. IEEE Computer Society, Washington, DC (1995)Google Scholar
  3. 3.
    Byrne, P., Becker, S., Burgess, N.: Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114(2), 340–375 (2007)CrossRefGoogle Scholar
  4. 4.
    Chrastil, E.R., Warren, W.H.: Active and passive spatial learning in human navigation: acquisition of survey knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 39(5), 1520–1537 (2013)CrossRefGoogle Scholar
  5. 5.
    Chrastil, E.R., Warren, W.H.: Active and passive spatial learning in human navigation: acquisition of graph knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 41(4), 1162–1178 (2015)CrossRefGoogle Scholar
  6. 6.
    Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)CrossRefGoogle Scholar
  7. 7.
    Cullen, K.E., Taube, J.S.: Our sense of direction: progress, controversies and challenges. Nat. Neurosci. 20(11), 1465–1473 (2017)CrossRefGoogle Scholar
  8. 8.
    Epstein, R.A., Patai, E.Z., Julian, J.B., Spiers, H.J.: The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20(11), 1504–1513 (2017)CrossRefGoogle Scholar
  9. 9.
    Filimon, F.: Are all spatial reference frames egocentric? Reinterpreting evidence for allocentric, object-centered, or world-centered reference frames. Front. Hum. Neurosci. 9, 648 (2015). Scholar
  10. 10.
    Friedman, A., Kohler, B.: Bidimensional regression: assessing the configural similarity and accuracy of cognitive maps and other two-dimensional data sets. Psychol. Methods 8(4), 468–491 (2003)CrossRefGoogle Scholar
  11. 11.
    Gamer, M., Lemon, J., Gamer, M.M., Robinson, A., Kendall’s, W.: Package ‘irr’: Various coefficients of interrater reliability and agreement (2012)Google Scholar
  12. 12.
    Gehrke, L.: Invisible Maze Task (IMT): Procedure. Figshare (2018).
  13. 13.
    Goeke, C., Kornpetpanee, S., Köster, M., Fernández-Revelles, A.B., Gramann, K., König, P.: Cultural background shapes spatial reference frame proclivity. Sci. Rep. 5, 11426 (2015)CrossRefGoogle Scholar
  14. 14.
    Gramann, K.: Embodiment of spatial reference frames and individual differences in reference frame proclivity. Spat. Cogn. Comput. 13(1), 1–25 (2013)CrossRefGoogle Scholar
  15. 15.
    Gramann, K., Gwin, J.T., Ferris, D.P., Oie, K., Jung, T.P., Lin, C.T., Liao, L.D., Makeig, S.: Cognition in action: imaging brain/body dynamics in mobile humans. Rev. Neurosci. 22(6), 593–608 (2011)CrossRefGoogle Scholar
  16. 16.
    Gramann, K., Jung, T.P., Ferris, D.P., Lin, C.T., Makeig, S.: Toward a new cognitive neuroscience: modeling natural brain dynamics. Front. Hum. Neurosci. 8(6), 444 (2014)Google Scholar
  17. 17.
    Gramann, K., Müller, H.J., Eick, E.M., Schönebeck, B.: Evidence of separable spatial representations in a virtual navigation task. J. Exp. Psychol. Hum. Percept. Perform. 31(6), 1199–1223 (2005)CrossRefGoogle Scholar
  18. 18.
    Gwin, J.T., Gramann, K., Makeig, S., Ferris, D.P.: Removal of movement artifact from high-density EEG recorded during walking and running. J. Neurophysiol. 103(6), 3526–3534 (2010)CrossRefGoogle Scholar
  19. 19.
    Hazen, N.L., Lockman, J.J., Pick, H.L.: The development of children’s representations of large-scale environments. Child Dev. 49(3), 623–636 (1978)CrossRefGoogle Scholar
  20. 20.
    Hegarty, M., Richardson, A.E., Montello, D.R., Lovelace, K.L., Subbiah, I.: Development of a self-report measure of environmental spatial ability. Intelligence 30(5), 425–447 (2002)CrossRefGoogle Scholar
  21. 21.
    Ishikawa, T., Montello, D.R.: Spatial knowledge acquisition from direct experience in the environment: individual differences in the development of metric knowledge and the integration of separately learned places. Cogn. Psychol. 52(2), 93–129 (2006)CrossRefGoogle Scholar
  22. 22.
    Janzen, G., van Turennout, M.: Selective neural representation of objects relevant for navigation. Nat. Neurosci. 7(6), 673–677 (2004)CrossRefGoogle Scholar
  23. 23.
    Kassambara, A.: ggpubr: ‘ggplot2’ based publication ready plots (2017)Google Scholar
  24. 24.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)CrossRefGoogle Scholar
  25. 25.
    Klatzky, R.L., Loomis, J.M., Beall, A.C., Chance, S.S., Golledge, R.G.: Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychol. Sci. 9(4), 293–298 (1998)CrossRefGoogle Scholar
  26. 26.
    Klippel, A., Hirtle, S., Davies, C.: You-are-here maps: creating spatial awareness through map-like representations. Spat. Cogn. Comput. 10(2–3), 83–93 (2010)CrossRefGoogle Scholar
  27. 27.
    Kozhevnikov, M., Hegarty, M.: A dissociation between object manipulation spatial ability and spatial orientation ability. Mem. Cogn. 29(5), 745–756 (2001)CrossRefGoogle Scholar
  28. 28.
    Loomis, J.M., Klatzky, R.L., Giudice, N.A.: Representing 3D space in working memory: spatial images from vision, hearing, touch, and language. In: Lacey, S., Lawson, R. (eds.) Multisensory Imagery, pp. 131–155. Springer, New York (2013). Scholar
  29. 29.
    Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S., Frith, C.D., O’Keefe, J.: Knowing where and getting there: a human navigation network. Science 280(5365), 921–924 (1998)CrossRefGoogle Scholar
  30. 30.
    Makeig, S., Gramann, K., Jung, T.P., Sejnowski, T.J., Poizner, H.: Linking brain, mind and behavior. Int. J. Psychophysiol. 73(2), 95–100 (2009)CrossRefGoogle Scholar
  31. 31.
    Moser, E.I., Kropff, E., Moser, M.B.: Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31(1), 69–89 (2008)CrossRefGoogle Scholar
  32. 32.
    Piaget, J., Inhelder, B.: The Child’s Conception of Space. Routledge & K. Paul, London (1956)Google Scholar
  33. 33.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D.: nlme: linear and nonlinear mixed effects models (2007)Google Scholar
  34. 34.
    Richardson, A.E., Collaer, M.L.: Virtual navigation performance: the relationship to field of view and prior video gaming experience. Percept. Mot. Skills 112(2), 477–498 (2011)CrossRefGoogle Scholar
  35. 35.
    Riecke, B.E., Cunningham, D.W., Bülthoff, H.H.: Spatial updating in virtual reality: the sufficiency of visual information. Psychol. Res. 71(3), 298–313 (2007)CrossRefGoogle Scholar
  36. 36.
    Schubert, T.W.: The sense of presence in virtual environments: a three-component scale measuring spatial presence, involvement, and realness. Zeitschrift für Medienpsychologie 2, 69–71 (2003)CrossRefGoogle Scholar
  37. 37.
    Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. Adv. Child Dev. Behav. 10(C), 9–55 (1975)CrossRefGoogle Scholar
  38. 38.
    Tversky, B., Lee, P.U.: Pictorial and verbal tools for conveying routes. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 51–64. Springer, Heidelberg (1999). Scholar
  39. 39.
    Wei, T., Simko, V.: Package ‘corrplot: visualization of a correlation matrix’ (v.0.77) (2016)Google Scholar
  40. 40.
    Weisberg, S.M., Schinazi, V.R., Newcombe, N.S., Shipley, T.F., Epstein, R.A.: Variations in cognitive maps: understanding individual differences in navigation. J. Exp. Psychol. Learn. Mem. Cogn. 40(3), 669–682 (2014)CrossRefGoogle Scholar
  41. 41.
    Wickham, H.: ggplot2: elegant graphics for data analysis, vol. 35 (2009)Google Scholar
  42. 42.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80 (1945)CrossRefGoogle Scholar
  43. 43.
    Wilke, C.O.: Cowplot: streamlined plot theme and plot annotations for ggplot2 (2015)Google Scholar
  44. 44.
    Winter, B.: Linear models and linear mixed effects models in R with linguistic applications. arXiv preprint arXiv:1308.5499 (Tutorial 2), pp. 1–42 (2013)
  45. 45.
    Wolbers, T., Hegarty, M.: What determines our navigational abilities? Trends Cogn. Sci. 14(3), 138–146 (2010)CrossRefGoogle Scholar
  46. 46.
    Wolbers, T., Klatzky, R.L., Loomis, J.M., Wutte, M.G., Giudice, N.A.: Modality-independent coding of spatial layout in the human brain. Curr. Biol. 21(11), 984–989 (2011)CrossRefGoogle Scholar
  47. 47.
    Xie, Y.: knitr: a general-purpose tool for dynamic report generation in R. Documentation 8(1), 1–12 (2012)MathSciNetGoogle Scholar
  48. 48.
    Yoder, R.M., Taube, J.S.: The vestibular contribution to the head direction signal and navigation. Front. Integr. Neurosci. 8(April), 32 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Biological Psychology and NeuroergnomicsTechnische Universität BerlinBerlinGermany
  2. 2.Swartz Center for Computational NeuroscienceUniversity of California San DiegoSan DiegoUSA
  3. 3.School of SoftwareUniversity of Technology SydneySydneyAustralia
  4. 4.Center for Advanced Neurological EngineeringUniversity of California San DiegoSan DiegoUSA

Personalised recommendations