Advertisement

Electrocortical Evidence for Long-Term Incidental Spatial Learning Through Modified Navigation Instructions

  • Anna WunderlichEmail author
  • Klaus Gramann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11034)

Abstract

The use of Navigation Assistance Systems for spatial orienting has become increasingly popular. Such automated navigation support, however, comes with a reduced processing of the surrounding environment and often with a decline of spatial orienting ability. To prevent such deskilling and to support spatial learning, the present study investigated incidental spatial learning by comparing standard navigation instructions with two modified navigation instruction conditions. The first modified instruction condition highlighted landmarks and provided additional redundant information regarding the landmark (contrast condition), while the second highlighted landmarks and included information of personal interest to the participant (personal-reference condition). Participants’ spatial knowledge of the previously unknown virtual city was tested three weeks later. Behavioral and electroencephalographic (EEG) data demonstrated enhanced spatial memory performance for participants in the modified navigation instruction conditions without further differentiating between modified instructions. Recognition performance of landmarks was better and the late positive complex of the event-related potential (ERP) revealed amplitude differences reflecting an increased amount of recollected information for modified navigation instructions. The results indicate a significant long-term spatial learning effect when landmarks are highlighted during navigation instructions.

Keywords

Spatial navigation EEG Navigation assistance system Incidental learning 

Notes

Acknowledgements

This work was supported by a stipend from the Stiftung der Deutschen Wirtschaft to AW. We would like to thank Matthias Rötting at TU Berlin for providing the car simulator facilities and Sabine Grieger for helping to conduct the experiment.

References

  1. 1.
    McKendrick, R., et al.: Into the wild: neuroergonomic differentiation of hand-held and augmented reality wearable displays during outdoor navigation with functional near infrared spectroscopy. Front. Hum. Neurosci. 10(May), 1–15 (2016)Google Scholar
  2. 2.
    Parasuraman, R., Molloy, R., Singh, I.: The international journal of aviation psychology performance consequences of automation-induced complacency. Int. J. Aviat. Psychol. 3(1), 1–23 (1993)CrossRefGoogle Scholar
  3. 3.
    Forbes, N., Burnett, G.E.: Investigating the contexts in which in-vehicle navigation system users have received and followed inaccurate route guidance instructions. In: Dorn, L. (ed.) Driver Behavior and Training, vol. III, pp. 292–310. Ashgate Publishing Limited (2007)Google Scholar
  4. 4.
    Münzer, S., Zimmer, H.D., Schwalm, M., Baus, J.: Computer assisted navigation and the aquisition of route and survey knowledge. J. Environ. Psychol. 26(4), 300–308 (2006)CrossRefGoogle Scholar
  5. 5.
    Gramann, K., Hoepner, P., Karrer-Gauss, K.: Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. Front. Psychol. 8(Feb), 193 (2017)Google Scholar
  6. 6.
    Giannopoulos, I., Kiefer, P., Raubal, M.: GazeNav: gaze based pedestrian navigation. Paper Presented at the MobileHCI, 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, Copenhagen, Denmark (2015)Google Scholar
  7. 7.
    Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. Adv. Child Dev. Behav. 10(C), 9–55 (1975)CrossRefGoogle Scholar
  8. 8.
    Gramann, K.: Embodiment of spatial reference frames and individual differences in reference frame proclivity. Spat. Cogn. Comput. 13(1), 1–25 (2013)CrossRefGoogle Scholar
  9. 9.
    Burgess, N.: Spatial memory: how egocentric and allocentric combine. Trends Cogn. Sci. 10(12), 551–557 (2006)CrossRefGoogle Scholar
  10. 10.
    Craik, F.I.M., Lockhart, R.S.: Levels of processing: a framework for memory research. J. Verbal Learn. Verbal Behav. 11(6), 671–684 (1972)CrossRefGoogle Scholar
  11. 11.
    Symons, C.S., Johnson, B.T.: The self-reference effect in memory: a meta-analysis. Psychol. Bull. 121(3), 371–394 (1997)CrossRefGoogle Scholar
  12. 12.
    Conway, M.A., Dewhurst, S.A.: Remembering, familiarity, and source monitoring. Q. J. Exp. Psychol. Sect. A 48(1), 125–140 (1995)CrossRefGoogle Scholar
  13. 13.
    Tresselt, M.E., Mayzner, M.S.: A study of incidental learning. J. Psychol. Interdiscip. Appl. 50(January), 339–347 (1960)CrossRefGoogle Scholar
  14. 14.
    Yonelinas, A.P.: The nature of recollection and familiarity: a review of 30 years of research. J. Mem. Lang. 46(3), 441–517 (2002)CrossRefGoogle Scholar
  15. 15.
    Vilberg, K.L., Moosavi, R.F., Rugg, M.D.: The relationship between electrophysiological correlates of recollection and amount of information retrieved. Brain Res. 1122(1), 161–170 (2007)CrossRefGoogle Scholar
  16. 16.
    Wilding, E.L.: In what way does the parietal ERP old/new effect index recollection? Int. J. Psychophysiol. 35(1), 81–87 (2000)CrossRefGoogle Scholar
  17. 17.
    Kun, A.L., Paek, T., Medenica, Ž., Memarović, N., Palinko, O.: Glancing at personal navigation devices can affect driving: experimental results and design implications. In: Proceedings of the 1st International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2009, p. 129 (2009)Google Scholar
  18. 18.
    Medenica, Z., Kun, A.L., Paek, T., Palinko, O.: Augmented reality vs. street views: a driving simulator study comparing two emerging navigation aids. Proceedings International Conference Human-Computer Interaction with Mobile Devices and Services (MobileHCI 2011), pp. 265–274 (2011)Google Scholar
  19. 19.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. Adv. Psychol. 52(C), 139–183 (1988)CrossRefGoogle Scholar
  20. 20.
    Russell, J.A., Weiss, A., Mendelsohn, G.A.: Affect grid: a single-item scale of pleasure and arousal. J. Pers. Soc. Psychol. 57(3), 493–502 (1989)CrossRefGoogle Scholar
  21. 21.
    Hegarty, M., Richardson, A.E., Montello, D.R., Lovelace, K., Subbiah, I.: Development of a self-report measure of environmental spatial ability. Intelligence 30, 425–448 (2003). Santa Barbara sense of direction scale questionnaireCrossRefGoogle Scholar
  22. 22.
    Gramann, K., Müller, H.J., Eick, E.M., Schönebeck, B.: Evidence of separable spatial representations in a virtual navigation task. J. Exp. Psychol. Hum. Percept. Perform. 31(6), 1199 (2005)CrossRefGoogle Scholar
  23. 23.
    Goeke, C., Kornpetpanee, S., Köster, M., Fernández-Revelles, A.B., Gramann, K., König, P.: Cultural background shapes spatial reference frame proclivity. Sci. Rep. 5, 1–13 (2015)CrossRefGoogle Scholar
  24. 24.
    Arnold, A.E.G.F., et al.: Cognitive mapping in humans and its relationship to other orientation skills. Exp. Brain Res. 224(3), 359–372 (2012)CrossRefGoogle Scholar
  25. 25.
    Roediger, H., McDermott, K.: Implicit memory in normal human subjects. In: Boller, F., Grafman, J. (eds.) Handbook of Neuropsychology, vol. 8, pp. 63–131. Elsevier Science Publishers, Amsterdam (1993)Google Scholar
  26. 26.
    Oostenveld, R., Praamstra, P.: The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 112(4), 713–719 (2001)CrossRefGoogle Scholar
  27. 27.
    Kothe, C.: Lab streaming layer (LSL) (2014). https://github.com/sccn/labstreaminglayer. Accessed 7 July 2018
  28. 28.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  29. 29.
    Makeig, S., Bell, A.J., Jung, T.-P., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. Adv. Neural Inf. Process. Syst. 8, 145–151 (1996)Google Scholar
  30. 30.
    Oostenveld, R., Oostendorp, T.F.: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull. Hum. Brain Mapp. 17(3), 179–192 (2002)CrossRefGoogle Scholar
  31. 31.
    Streeter, L.A., Vitello, D., Wonsiewicz, S.A.: How to tell people where to go: comparing navigational aids. Int. J. Man Mach. Stud. 22(5), 549–562 (1985)CrossRefGoogle Scholar
  32. 32.
    Liang, Y., Lee, J.D.: Combining cognitive and visual distraction: less than the sum of its parts. Accid. Anal. Prev. 42(3), 881–890 (2010)CrossRefGoogle Scholar
  33. 33.
    Kalyuga, S., Ayres, P., Chandler, P., Sweller, J.: The expertise reversal effect. Educ. Psychol. 38(1), 23–31 (2003)CrossRefGoogle Scholar
  34. 34.
    Yonelinas, A.P.: Consciousness, control, and confidence: the 3 Cs of recognition memory. J. Exp. Psychol. Gen. 130(3), 361–379 (2001)CrossRefGoogle Scholar
  35. 35.
    Sandamas, G., Foreman, N.: Drawing maps and remembering landmarks after driving in a virtual small town environment. J. Maps 3(1), 35–45 (2007)CrossRefGoogle Scholar
  36. 36.
    Friedman, D., Johnson, R.: Event-related potential (ERP) studies of memory encoding and retrieval: a selective review. Microsc. Res. Tech. 51(April), 6–28 (2000)CrossRefGoogle Scholar
  37. 37.
    Ventura-Bort, C., et al.: Binding neutral information to emotional contexts: brain dynamics of long-term recognition memory. Cogn. Affect. Behav. Neurosci. 16(2), 234–247 (2016)CrossRefGoogle Scholar
  38. 38.
    Paller, K.A., Kutas, M., Mayes, A.R.: Neural correlates of encoding in an incidental learning paradigm. Electroencephalogr. Clin. Neurophysiol. 67(4), 360–371 (1987)CrossRefGoogle Scholar
  39. 39.
    Maguire, E.A., Burgess, N., O’Keefe, J.: Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates. Curr. Opin. Neurobiol. 9(2), 171–177 (1999)CrossRefGoogle Scholar
  40. 40.
    Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S.J., Frith, C.D., Okeefe, J.: Knowing where and getting there: a human navigation network. Science 280(5365), 921–924 (1998)CrossRefGoogle Scholar
  41. 41.
    Rugg, M.D., Mark, R.E., Walla, P., Schloerscheidt, A.M., Birch, C.S., Allan, K.: Dissociation of the neural correlates of implicit and explicit memory. Nature 392(6676), 595–598 (1998)CrossRefGoogle Scholar
  42. 42.
    Johnson, R., Kreiter, K., Zhu, J., Russo, B.: A spatio-temporal comparison of semantic and episodic cued recall and recognition using event-related brain potentials. Cogn. Brain. Res. 7(2), 119–136 (1998)CrossRefGoogle Scholar
  43. 43.
    Tucker, D.M., Harty-Speiser, A., McDougal, L., Luu, P., deGrandpre, D.: Mood and spatial memory: emotion and right hemisphere contribution to spatial cognition. Biol. Psychol. 50(2), 103–125 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Biological Psychology and NeuroergonomicsBerlin Institute of TechnologyBerlinGermany
  2. 2.School of SoftwareUniversity of Technology SydneySydneyAustralia
  3. 3.Center for Advanced Neurological EngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations