Advertisement

Material Candidates and Structures II: Skutterudites, Zintl Phase, and Clathrates

  • N. M. Ravindra
  • Bhakti Jariwala
  • Asahel Bañobre
  • Aniket Maske
Chapter
  • 505 Downloads
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

Skutterudite compounds are potential thermoelectric materials at high temperature. The “phonon-glass electron-crystal” system, i.e., materials with very low thermal conductivity such as glass and materials with good electronic transport properties such as crystalline materials, can lead to efficient thermoelectrics in skutterudite compounds due to their crystal structure. Generally, these are composites of metal elements and pnictogen elements in the form of MX3, where, in general, Co, Fe, Rh, and Ir represent M and P, As, and Sb are X, respectively. This class of compound consists of 32 atoms, having 8 cubic sublattices, composed of metal elements; 6 of them are filled with pnictogen square planar rings and form octahedral structure with metal elements. Such type of compounds belongs to cubic space group \( \mathit{\operatorname{Im}}\overline{3} \) crystal structure [1]. Approaches have been made in the literature to improve ZT primarily by lowering the thermal conductivity in skutterudites. Their complex lattice structure, due to the composite of large unit cell by heavy atomic masses, is the main reason for the low thermal conductivity. Most of the explanation is based on CoSb3, as it is one of the most common candidates of binary skutterudite with the body-centered cubic crystal structure, as shown in Fig. 6.1, having two interstitial voids at the 2a positions in the crystal lattice.

Keywords

Zintl Phases Binary Skutterudite Phonon Glass Electron Crystal (PGEC) Seebeck coefficientSeebeck Coefficient Yb 14MnSb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.T. Morelli, G.P. Meisner, B. Chen, S. Hu, C. Uher, Phys. Rev. B 56, 7376–7383 (1997)CrossRefGoogle Scholar
  2. 2.
    W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, X. Tang, Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. J. Am. Chem. Soc. 131, 3713–3720 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Colceag, A. Dauscher, B. Lenoir, V. Da Ros, R. Birjega, A. Moldovan, M. Dinescu, Appl. Surf. Sci. 253, 8097–8101 (2007)CrossRefGoogle Scholar
  4. 4.
    Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, J. Alloys Compd. 315, 193–197 (2001)CrossRefGoogle Scholar
  5. 5.
    P.-X. Lu, Q.-H. Ma, Y. Li, X. Hu, J. Magn. Magn. Mater. 322, 3080–3083 (2010)CrossRefGoogle Scholar
  6. 6.
    T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Cryst. Growth 166, 722–726 (1996)CrossRefGoogle Scholar
  7. 7.
    D.T. Morelli, T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, C. Uher, Phys. Rev. B 51, 9622–9628 (1995)CrossRefGoogle Scholar
  8. 8.
    J.P. Fleurial, T.F. Caillat, A. Borshchevsky, Semiconductor alloys. Google Patents, 1997Google Scholar
  9. 9.
    J.P. Fleurial, T. Caillat, A. Borshchevsky. Skutterudites: An update, in Thermoelectrics, 1997. Proceedings ICT’97. XVI International Conference on. 1997Google Scholar
  10. 10.
    T. Caillat, J. Kulleck, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 79, 8419–8426 (1996)CrossRefGoogle Scholar
  11. 11.
    X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, C. Uher, Chem. Mater. 23, 2948–2955 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Katsuyama, M. Watanabe, M. Kuroki, T. Maehata, M. Ito, J. Appl. Phys. 93, 2758–2764 (2003)CrossRefGoogle Scholar
  13. 13.
    J. Navrátil, F. Laufek, T. Plecháček, Č. Drašar, J. Solid State Chem. 193, 2–7 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Navrátil, F. Laufek, T. Plecháček, J. Plášil, J. Alloys Compd. 493, 50–54 (2010)CrossRefGoogle Scholar
  15. 15.
    K.A. Kokh, S.V. Makarenko, V.A. Golyashov, O.A. Shegai, O.E. Tereshchenko, CrystEngComm 16, 581–584 (2014)CrossRefGoogle Scholar
  16. 16.
    F. Laufek, J. Navrátil, J. Plášil, T. Plecháček, Č. Drašar, J. Alloys Compd. 479, 102–106 (2009)CrossRefGoogle Scholar
  17. 17.
    F. Xiao, B. Yoo, K.H. Lee, N.V. Myung, J. Am. Chem. Soc. 129, 10068–10069 (2007)CrossRefGoogle Scholar
  18. 18.
    W. Wang, X. Lu, T. Zhang, G. Zhang, W. Jiang, X. Li, J. Am. Chem. Soc. 129, 6702–6703 (2007)CrossRefGoogle Scholar
  19. 19.
    J.Q. Li, X.W. Feng, W.A. Sun, W.Q. Ao, F.S. Liu, Y. Du, Mater. Chem. Phys. 112, 57–62 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Peng, J. Yang, X. Song, Y. Chen, T. Zhang, J. Alloys Compd. 426, 7–11 (2006)CrossRefGoogle Scholar
  21. 21.
    K.T. Wojciechowski, J. Alloys Compd. 439, 18–24 (2007)CrossRefGoogle Scholar
  22. 22.
    R.C. Mallik, R. Anbalagan, G. Rogl, E. Royanian, P. Heinrich, E. Bauer, P. Rogl, S. Suwas, Acta Mater. 61, 6698–6711 (2013)CrossRefGoogle Scholar
  23. 23.
    X. Su, H. Li, Y. Yan, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, C. Uher, Acta Mater. 60, 3536–3544 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Zhou, D. Morelli, X. Zhou, G. Wang, C. Uher, Intermetallics 19, 1390–1393 (2011)CrossRefGoogle Scholar
  25. 25.
    B. Chen, J.-H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.-P. Fleurial, T. Caillat, A. Borshchevsky, Phys. Rev. B 55, 1476–1480 (1997)CrossRefGoogle Scholar
  26. 26.
    J.P. Fleurial, A. Borshchevsky, T. Caillat, D.T. Morelli, G.P. Meisner. High figure of merit in Ce-filled skutterudites, in Thermoelectrics, 1996. Fifteenth International Conference on. 1996Google Scholar
  27. 27.
    L. Han, X. Tang, Z. Qingjie, C. Uher, Appl. Phys. Lett. 93, 252109-1–252109-3 (2008)Google Scholar
  28. 28.
    M. Puyet, B. Lenoir, A. Dauscher, P. Pécheur, C. Bellouard, J. Tobola, J. Hejtmanek, Phys. Rev. B 73, 035126 (2006)CrossRefGoogle Scholar
  29. 29.
    L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, C. Uher, J. Appl. Phys. 90, 1864–1868 (2001)CrossRefGoogle Scholar
  30. 30.
    J.S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, T. Hirai, J. Appl. Phys. 91, 3698–3705 (2002)CrossRefGoogle Scholar
  31. 31.
    X. Tang, Q. Zhang, L. Chen, T. Goto, T. Hirai, J. Appl. Phys. 97, 093712 (2005)Google Scholar
  32. 32.
    X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, W. Zhang, Appl. Phys. Lett. 92, 182101 (2008)Google Scholar
  33. 33.
    H. Li, X. Tang, Q. Zhang, C. Uher, Appl. Phys. Lett. 94, 102114 (2009)Google Scholar
  34. 34.
    X. Tang, H. LI, Q. Zhang, M. Niino, T. Goto, J. Appl. Phys. 100, 123702 (2006)Google Scholar
  35. 35.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, J. Am. Chem. Soc. 133, 7837–7846 (2011)CrossRefGoogle Scholar
  36. 36.
    S.-Y. Kim, S.-M. Choi, W.-S. Seo, Y.S. Lim, S. Lee, I.-H. Kim, H.K. Cho, J. Nanomater. 2013, 7 (2013)Google Scholar
  37. 37.
    J. Yang, W. Zhang, S.Q. Bai, Z. Mei, L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007)Google Scholar
  38. 38.
    B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 1325–1328 (1996)CrossRefGoogle Scholar
  39. 39.
    G.S. Nolas, J.L. Cohn, G.A. Slack, Phys. Rev. B 58, 164–170 (1998)CrossRefGoogle Scholar
  40. 40.
    D. Mandrus, B.C. Sales, V. Keppens, B.C. Chakoumakos, P. Dai, L.A. Boatner, R.K. Williams, J.R. Thompson, T.W. Darling, A. Migliori, M.B. Maple, D.A. Gajewski, E.J. Freeman, MRS Online Proc. Libr. 478, 199–209 (1997)Google Scholar
  41. 41.
    G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, C. Uher, Phys. Rev. Lett. 80, 3551–3554 (1998)CrossRefGoogle Scholar
  42. 42.
    G.S. Nolas, M. Kaeser, R.T. Littleton, T.M. Tritt, Appl. Phys. Lett. 77, 1855–1857 (2000)CrossRefGoogle Scholar
  43. 43.
    L. Zhang, A. Grytsiv, P. Rogl, E. Bauer, M. Zehetbauer, J. Phys. D. Appl. Phys. 42, 225405 (2009)CrossRefGoogle Scholar
  44. 44.
    M. Nicklas, R. Gumeniuk, W. Schnelle, H. Rosner, A. Leithe-Jasper, F. Steglich, Y. Grin, J. Phys. Conf. Ser. 273, 012118 (2011)CrossRefGoogle Scholar
  45. 45.
    L. Taoxiang, T. Xinfeng, X. Wenjie, Y. Yonggao, Z. Qingjie, J. Rare Earths 25, 739–743 (2007)CrossRefGoogle Scholar
  46. 46.
    C. Sekine, Y. Kiyota, Y. Kawamura, T. Yagi, J. Phys. Conf. Ser. 391, 012061 (2012)CrossRefGoogle Scholar
  47. 47.
    K. Matsuhira, Y. Doi, M. Wakeshima, Y. Hinatsu, H. Amitsuka, Y. Shimaya, R. Giri, C. Sekine, I. Shirotani, J. Phys. Soc. Jpn. 74, 1030–1035 (2005)CrossRefGoogle Scholar
  48. 48.
    E. Bauer, A. Grytsiv, X.-Q. Chen, N. Melnychenko-Koblyuk, G. Hilscher, H. Kaldarar, H. Michor, E. Royanian, G. Giester, M. Rotter, R. Podloucky, P. Rogl, Phys. Rev. Lett. 99, 217001 (2007)CrossRefGoogle Scholar
  49. 49.
    X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, Y.Z. Pei, J. Appl. Phys. 99, 053711-1–053711-4 (2006)Google Scholar
  50. 50.
    G.S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg, D.C. Johnson, Appl. Phys. Lett. 77, 52–54 (2000)CrossRefGoogle Scholar
  51. 51.
    D. Kim, K. Kurosaki, Y. Ohishi, H. Muta, S. Yamanaka, APL Mater. 1, 032115 (2013)Google Scholar
  52. 52.
    J. Leszczynski, V.D. Ros, B. Lenoir, A. Dauscher, C. Candolfi, P. Masschelein, J. Hejtmanek, K. Kutorasinski, J. Tobola, R.I. Smith, C. Stiewe, E. Müller, J. Phys. D. Appl. Phys. 46, 495106 (2013)CrossRefGoogle Scholar
  53. 53.
    A. Zhou, L.-s. Liu, P.-c. Zhai, W.-Y. Zhao, Q.-J. Zhang, J. Electron. Mater. 39, 1832–1836 (2010)CrossRefGoogle Scholar
  54. 54.
    C. Chubilleau, B. Lenoir, P. Masschelein, A. Dauscher, C. Godart, J. Electron. Mater. 41, 1181–1185 (2012)CrossRefGoogle Scholar
  55. 55.
    C. Uher, C.-P. Li, S. Ballikaya, J. Electron. Mater. 39, 2122–2126 (2010)CrossRefGoogle Scholar
  56. 56.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M.B. Kerber, M. Zehetbauer, S. Puchegger, Intermetallics 18, 2435–2444 (2010)CrossRefGoogle Scholar
  57. 57.
    V. Ponnambalam, D.T. Morelli, S. Bhattacharya, T.M. Tritt, J. Alloys Compd. 580, 598–603 (2013)CrossRefGoogle Scholar
  58. 58.
    S.M. Kauzlarich, S.R. Brown, G.J. Snyder, Dalton Trans., 2099–2107 (2007)Google Scholar
  59. 59.
    E.S. Toberer, A.F. May, B.C. Melot, E. Flage-Larsen, G.J. Snyder, Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu). Dalton Trans. 39, 1046–1054 (2010)CrossRefGoogle Scholar
  60. 60.
    J. Wang, M. Yang, M.-Y. Pan, S.-Q. Xia, X.-T. Tao, H. He, G. Darone, S. Bobev, Synthesis, crystal and electronic structures, and properties of the new Pnictide semiconductors A 2Cd Pn 2 (A = Ca, Sr, Ba, Eu; Pn = P, As). Inorg. Chem. 50, 8020–8027 (2011)CrossRefGoogle Scholar
  61. 61.
    J. Wang, S.-Q. Xia, X.-T. Tao, Inorg. Chem. 51, 5771–5778 (2012)CrossRefGoogle Scholar
  62. 62.
    J. Wang, S.-Q. Xia, X.-T. Tao, J. Solid State Chem. 198, 6–9 (2013)CrossRefGoogle Scholar
  63. 63.
    V. Ponnambalam, X. Gao, S. Lindsey, P. Alboni, Z. Su, B. Zhang, F. Drymiotis, M.S. Daw, T.M. Tritt, J. Alloys Compd. 484, 80–85 (2009)CrossRefGoogle Scholar
  64. 64.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)CrossRefGoogle Scholar
  65. 65.
    X.-J. Wang, M.-B. Tang, J.-T. Zhao, H.-H. Chen, X.-X. Yang, Appl. Phys. Lett. 90, 232107 (2007)Google Scholar
  66. 66.
    J.V. Zaikina, W. Schnelle, K.A. Kovnir, A.V. Olenev, Y. Grin, A.V. Shevelkov, Solid State Sci. 9, 664–671 (2007)CrossRefGoogle Scholar
  67. 67.
    F. Gascoin, S. Ottensmann, D. Stark, S.M. Haïle, G.J. Snyder, Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaxYb1−xZn2Sb2. Adv. Funct. Mater. 15, 1860–1864 (2005)CrossRefGoogle Scholar
  68. 68.
    E. Flage-Larsen, S. Diplas, Ø. Prytz, E.S. Toberer, A.F. May, Phys. Rev. B 81, 205204 (2010)CrossRefGoogle Scholar
  69. 69.
    S.R. Brown, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, Chem. Mater. 18, 1873–1877 (2006)CrossRefGoogle Scholar
  70. 70.
    H. Zhang, M. Baitinger, M.-B. Tang, Z.-Y. Man, H.-H. Chen, X.-X. Yang, Y. Liu, L. Chen, Y. Grin, J.-T. Zhao, Dalton Trans. 39, 1101–1104 (2010)CrossRefGoogle Scholar
  71. 71.
    H. Zhang, L. Fang, M.-B. Tang, H.-H. Chen, X.-X. Yang, X. Guo, J.-T. Zhao, Y. Grin, Intermetallics 18, 193–198 (2010)CrossRefGoogle Scholar
  72. 72.
    H. Zhang, L. Fang, M.-B. Tang, Z.Y. Man, H.H. Chen, X.X. Yang, M. Baitinger, Y. Grin, J.-T. Zhao, J. Chem. Phys. 133, 194701 (2010)Google Scholar
  73. 73.
    K. Guo, Q.-G. Cao, X.-J. Feng, M.-B. Tang, H.-H. Chen, X. Guo, L. Chen, Y. Grin, J.-T. Zhao, Eur. J. Inorg. Chem. 2011, 4043–4048 (2011)CrossRefGoogle Scholar
  74. 74.
    A.F. May, E.S. Toberer, G.J. Snyder, J. Appl. Phys. 106, 013706-1–013706-5 (2009)CrossRefGoogle Scholar
  75. 75.
    S.-J. Kim, S. Hu, C. Uher, T. Hogan, B. Huang, J.D. Corbett, M.G. Kanatzidis, J. Solid State Chem. 153, 321–329 (2000)CrossRefGoogle Scholar
  76. 76.
    S.-J. Kim, S. Hu, C. Uher, M.G. Kanatzidis, Chem. Mater. 11, 3154–3159 (1999)CrossRefGoogle Scholar
  77. 77.
    S. Bobev, V. Fritsch, J.D. Thompson, J.L. Sarrao, B. Eck, R. Dronskowski, S.M. Kauzlarich, J. Solid State Chem. 178, 1071–1079 (2005)CrossRefGoogle Scholar
  78. 78.
    C.L. Condron, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, J. Solid State Chem. 179, 2252–2257 (2006)CrossRefGoogle Scholar
  79. 79.
    S.-J. Kim, J.R. Ireland, C.R. Kannewurf, M.G. Kanatzidis, J. Solid State Chem. 155, 55–61 (2000)CrossRefGoogle Scholar
  80. 80.
    L. Zhang, M.-H. Du, D.J. Singh, Zintl-phase compounds with SnSb4 tetrahedral anions: Electronic structure and thermoelectric properties. Phys. Rev. B 81, 075117 (2010)CrossRefGoogle Scholar
  81. 81.
    I. Todorov, D.Y. Chung, L. Ye, A.J. Freeman, M.G. Kanatzidis, Inorg. Chem. 48, 4768–4776 (2009)CrossRefGoogle Scholar
  82. 82.
    T. Yi, G. Zhang, N. Tsujii, J.-P. Fleurial, A. Zevalkink, G.J. Snyder, N. Grønbech-Jensen, S.M. Kauzlarich, Inorg. Chem. 52, 3787–3794 (2013)CrossRefGoogle Scholar
  83. 83.
    V. Ponnambalam, D.T. Morelli, Thermoelectric Properties of Light-Element-Containing Zintl Compounds CaZn. [2-x]Cu[x]P[2] and CaMnZn[1-x]Cu[x]P[2] (x = 0.0-0.2) (Springer, Heidelberg, Germany, 2014)Google Scholar
  84. 84.
    S.S. Stoyko, M. Khatun, A. Mar, Inorg. Chem. 51, 2621–2628 (2012)CrossRefGoogle Scholar
  85. 85.
    X.-C. Liu, M.-Y. Pan, X. Li, S.-Q. Xia, X.-T. Tao, Inorganic Chemistry Frontiers 1, 689–694 (2014)CrossRefGoogle Scholar
  86. 86.
    D.B. Migas, V.L. Shaposhnikov, A.B. Filonov, V.E. Borisenko, N.N. Dorozhkin, Phys. Rev. B 77, 075205 (2008)CrossRefGoogle Scholar
  87. 87.
    I. Kawasumi, M. Sakata, I. Nishida, K. Masumoto, J. Mater. Sci. 16, 355–366 (1981)CrossRefGoogle Scholar
  88. 88.
    N.L. Okamoto, J.-H. Kim, K. Tanaka, H. Inui, Splitting of guest atom sites and lattice thermal conductivity of type-I and type-III clathrate compounds in the Ba-Ga-Ge system. Acta Mater. 54, 5519–5528 (2006)CrossRefGoogle Scholar
  89. 89.
    J.R.L. Mardegan, G. Fabbris, L.S.I. Veiga, C. Adriano, M.A. Avila, D. Haskel, C. Giles, Pressure-induced amorphization and collapse of magnetic order in the type-I clathrate Eu8Ga16Ge30. Phys. Rev. B 88, 144105 (2013)CrossRefGoogle Scholar
  90. 90.
    M.C. Schäfer, S. Bobev, Tin clathrates with the type II structure. J. Am. Chem. Soc. 135, 1696–1699 (2013)CrossRefGoogle Scholar
  91. 91.
    S. Deng, Y. Saiga, K. Suekuni, T. Takabatake, Enhancement of thermoelectric efficiency in type-VIII clathrate Ba8Ga16Sn30 by Al substitution for Ga. J. Appl. Phys. 108, 073705 (2010)CrossRefGoogle Scholar
  92. 92.
    M.-H. Phan, V. Franco, A. Chaturvedi, S. Stefanoski, G.S. Nolas, H. Srikanth, Phys. Rev. B 84, 054436 (2011)CrossRefGoogle Scholar
  93. 93.
    B. Eisenmann, H. Schäfer, R. Zagler, J. Less-Common Met 118, 43–55 (1986)CrossRefGoogle Scholar
  94. 94.
    H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza, L. Häming, J. Solid State Chem. 151, 117–121 (2000)CrossRefGoogle Scholar
  95. 95.
    Y. Kono, N. Ohya, T. Taguchi, K. Suekuni, T. Takabatake, S. Yamamoto, K. Akai, J. Appl. Phys. 107, 123720 (2010)CrossRefGoogle Scholar
  96. 96.
    S. Paschen, W. Carrillo-Cabrera, A. Bentien, V.H. Tran, M. Baenitz, Y. Grin, F. Steglich, Phys. Rev. B 64, 214404 (2001)CrossRefGoogle Scholar
  97. 97.
    Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, M.A. Avila, K. Suekuni, I. Ishii, T. Suzuki, T. Takabatake, Phys. Rev. B 74, 174303 (2006)CrossRefGoogle Scholar
  98. 98.
    G.S. Nolas, T.J.R. Weakley, J.L. Cohn, R. Sharma, Phys. Rev. B 61, 3845–3850 (2000)CrossRefGoogle Scholar
  99. 99.
    B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson, D. Mandrus, Phys. Rev. B 63, 245113 (2001)CrossRefGoogle Scholar
  100. 100.
    R.P. Hermann, V. Keppens, P. Bonville, G.S. Nolas, F. Grandjean, G.J. Long, H.M. Christen, B.C. Chakoumakos, B.C. Sales, D. Mandrus, Phys. Rev. Lett. 97, 017401 (2006)CrossRefGoogle Scholar
  101. 101.
    M.H. Phan, G.T. Woods, A. Chaturvedi, S. Stefanoski, G.S. Nolas, H. Srikanth, Appl. Phys. Lett. 93, 252505 (2008)Google Scholar
  102. 102.
    S. Srinath, J. Gass, D.J. Rebar, G.T. Woods, H. Srikanth, G.S. Nolas, J. Appl. Phys. 99, 08K902 (2006)Google Scholar
  103. 103.
    P.F.S. Rosa, W. Iwamoto, L.M. Holanda, R.A. Ribeiro, P.G. Pagliuso, C. Rettori, M.A. Avila, Phys. Rev. B 87, 224414 (2013)CrossRefGoogle Scholar
  104. 104.
    V. Pacheco, A. Bentien, W. Carrillo-Cabrera, S. Paschen, F. Steglich, Y. Grin, Phys. Rev. B 71, 165205 (2005)CrossRefGoogle Scholar
  105. 105.
    A. Bentien, V. Pacheco, S. Paschen, Y. Grin, F. Steglich, Phys. Rev. B 71, 165206 (2005)CrossRefGoogle Scholar
  106. 106.
    A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, G.D. Stucky, J. Appl. Phys. 99, 023708 (2006)CrossRefGoogle Scholar
  107. 107.
    J.D. Bryan, N.P. Blake, H. Metiu, G.D. Stucky, B.B. Iversen, R.D. Poulsen, A. Bentien, J. Appl. Phys. 92, 7281–7290 (2002)CrossRefGoogle Scholar
  108. 108.
    N.L. Okamoto, K. Kishida, K. Tanaka, H. Inui, J. Appl. Phys. 101, 113525 (2007)CrossRefGoogle Scholar
  109. 109.
    D. Cederkrantz, A. Saramat, G.J. Snyder, A.E.C. Palmqvist, J. Appl. Phys. 106, 074509 (2009)CrossRefGoogle Scholar
  110. 110.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, D.M. Rowe, J. Appl. Phys. 87, 7871–7875 (2000)CrossRefGoogle Scholar
  111. 111.
    J.F. Meng, N.V. Chandra Shekar, J.V. Badding, G.S. Nolas, J. Appl. Phys. 89, 1730–1733 (2001)CrossRefGoogle Scholar
  112. 112.
    N.P. Blake, S. Latturner, J.D. Bryan, G.D. Stucky, H. Metiu, J. Chem. Phys. 116, 9545–9547 (2002)CrossRefGoogle Scholar
  113. 113.
    L.M. Holanda, J.M. Vargas, C. Rettori, P.G. Pagliuso, E.M. Bittar, M.A. Avila, T. Takabatake, Phys. B Condens. Matter 404, 3300–3303 (2009)CrossRefGoogle Scholar
  114. 114.
    G.T. Woods, J. Martin, M. Beekman, R.P. Hermann, F. Grandjean, V. Keppens, O. Leupold, G.J. Long, G.S. Nolas, Phys. Rev. B 73, 174403 (2006)CrossRefGoogle Scholar
  115. 115.
    K. Suekuni, T. Tanaka, S. Yamamoto, M. Avila, K. Umeo, Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, T. Takabatake, J. Electron. Mater. 38, 1516–1520 (2009)CrossRefGoogle Scholar
  116. 116.
    K. Suekuni, M.A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa, T. Takabatake, Phys. Rev. B 77, 235119 (2008)CrossRefGoogle Scholar
  117. 117.
    R. Shirataki, M. Hokazono, T. Nakabayashi, H. Anno, IOP Conference Series: Materials Science and Engineering 18, 142012 (2011)CrossRefGoogle Scholar
  118. 118.
    H. Anno, H. Yamada, T. Nakabayashi, M. Hokazono, R. Shirataki, J. Phys. Conf. Ser. 379, 012007 (2012)CrossRefGoogle Scholar
  119. 119.
    K. Nakamura, S. Yamada, T. Ohnuma, Mater. Trans. 54, 276–285 (2013)CrossRefGoogle Scholar
  120. 120.
    N. Tsujii, J.H. Roudebush, A. Zevalkink, C.A. Cox-Uvarov, G. Jeffery Snyder, S.M. Kauzlarich, J. Solid State Chem. 184, 1293–1303 (2011)CrossRefGoogle Scholar
  121. 121.
    H. Anno, M. Hokazono, R. Shirataki, Y. Nagami, J. Mater. Sci. 48, 2846–2854 (2013)CrossRefGoogle Scholar
  122. 122.
    G.K.H. Madsen, K. Schwarz, P. Blaha, D.J. Singh, Phys. Rev. B 68, 125212 (2003)CrossRefGoogle Scholar
  123. 123.
    B.C. Chakoumakos, B.C. Sales, D.G. Mandrus, G.S. Nolas, J. Alloys Compd. 296, 80–86 (2000)CrossRefGoogle Scholar
  124. 124.
    N.P. Blake, D. Bryan, S. Latturner, L. Møllnitz, G.D. Stucky, H. Metiu, J. Chem. Phys. 114, 10063–10074 (2001)CrossRefGoogle Scholar
  125. 125.
    N.P. Blake, S. Latturner, J.D. Bryan, G.D. Stucky, H. Metiu, J. Chem. Phys. 115, 8060–8073 (2001)CrossRefGoogle Scholar
  126. 126.
    V. Keppens, B.C. Sales, D. Mandrus, B.C. Chakoumakos, C. Laermans, Philos. Mag. Lett. 80, 807–812 (2000)CrossRefGoogle Scholar
  127. 127.
    H. Anno, M. Hokazono, M. Kawamura, J. Nagao, K. Matsubara. Thermoelectric properties of Ba8GaxGe46-x clathrate compounds, in Thermoelectrics, 2002. Proceedings ICT’02. Twenty-First International Conference on. 2002Google Scholar
  128. 128.
    D. Huo, T. Sakata, T. Sasakawa, M.A. Avila, M. Tsubota, F. Iga, H. Fukuoka, S. Yamanaka, S. Aoyagi, T. Takabatake, Phys. Rev. B 71, 075113 (2005)CrossRefGoogle Scholar
  129. 129.
    J.-H. Kim, N.L. Okamoto, K. Kishida, K. Tanaka, H. Inui, Acta Mater. 54, 2057–2062 (2006)CrossRefGoogle Scholar
  130. 130.
    Y. Sasaki, K. Kishimoto, T. Koyanagi, H. Asada, K. Akai, J. Appl. Phys. 105, 073702 (2009)Google Scholar
  131. 131.
    K. Kishimoto, N. Ikeda, K. Akai, T. Koyanagi, Appl. Phys. Express 1, 031201 (2008)CrossRefGoogle Scholar
  132. 132.
    G.S. Nolas, J.L. Cohn, J.S. Dyck, C. Uher, G.A. Lamberton, T.M. Tritt, J. Mater. Res. 19, 3556–3559 (2004)CrossRefGoogle Scholar
  133. 133.
    D. Shu-Kang, L. De-Cong, S. Lan-Xian, H. Rui-Ting, T. Takabatake, Chinese Physics B 21, 017401 (2012)CrossRefGoogle Scholar
  134. 134.
    Y. Chen, B. Du, K. Kajisa, T. Takabatake, J. Electron. Mater. 43, 1916–1921 (2014)CrossRefGoogle Scholar
  135. 135.
    M.A. Avila, D. Huo, T. Sakata, K. Suekuni, T. Takabatake, J. Phys. Condens. Matter 18, 1585 (2006)CrossRefGoogle Scholar
  136. 136.
    M.A. Avila, K. Suekuni, K. Umeo, T. Takabatake, Phys. B Condens. Matter 383, 124–125 (2006)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • N. M. Ravindra
    • 1
  • Bhakti Jariwala
    • 2
  • Asahel Bañobre
    • 3
  • Aniket Maske
    • 3
  1. 1.Department of PhysicsNew Jersey Institute of TechnologyNewarkUSA
  2. 2.New Jersey Institute of TechnologyNewarkUSA
  3. 3.Interdisciplinary Program in Materials Science & Engineering New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations