Advertisement

Thermoelectric Properties of Silicon-Germanium Alloys

  • N. M. Ravindra
  • Bhakti Jariwala
  • Asahel Bañobre
  • Aniket Maske
Chapter
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

In this chapter, SiGe nanocomposites are investigated for various parameters, such as thermal conductivity, electrical conductivity, and Seebeck coefficient, which determine their applications in thermoelectrics. Grain boundaries in nanocomposites can scatter phonons, when their mean free path is longer than the grain size. Mean free path of electrons is usually shorter than the grain size of nanocomposites, so that the electrical conductivities of nanocomposites are not expected to change significantly. However, the results show that, at the nanoscale, the properties related to electron transport are affected. Based on the calculations of the electronic and thermal properties in the literature, studies show that an enhancement in ZT for n-type and p-type SiGe alloys is mostly due to the reduction in the thermal conductivity. Such a reduction is due to both the alloying effect and increased phonon interface scattering at the grain boundaries.

Keywords

SiGe Alloys Seebeck coefficientSeebeck Coefficient Electrical conductivityElectrical Conductivity Power factorPower Factor boundariesGrain Boundaries 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.F. Ioffe, E.K. Iordanishvili, T.S. Staviskaya, A. Gelbtuch, Semiconductor Thermoelements and Thermoelectric Cooling (InfoSearch, London, 1957)Google Scholar
  2. 2.
    A.F. Ioffe, L.S. Stilbans, E.K. Iordanishvili, T.S. Stavitskaya, Termoelektricheskoe Okhlazhdenie (U.S.S.R. Academy of Sciences, Moscow-Leningrad, 1949)Google Scholar
  3. 3.
    V. Siklitsky, Silicon Germanium (May 2012). http://www.ioffe.rssi.ru
  4. 4.
    J. Snyder, Thermoelectrics (Dec 2014 and references therein). http://www.its.caltech.edu/~jsnyder
  5. 5.
    H.J. Goldsmid, R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954)CrossRefGoogle Scholar
  6. 6.
    D.M. Rowe, CRC Handbook on Thermoelectrics (CRC Press, Danvers, 1995)CrossRefGoogle Scholar
  7. 7.
    M.C. Steele, F.D. Rosi, J. Appl. Phys. 29, 1517 (1958)CrossRefGoogle Scholar
  8. 8.
    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)CrossRefGoogle Scholar
  9. 9.
    J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, D.S. Beers, J. Appl. Phys. 35, 2899 (1964)CrossRefGoogle Scholar
  10. 10.
    J.P. Dismukes, L. Ekstrom, R.J. Pfaff, J. Phys. Chem. 68(10), 3021–3027 (1964)CrossRefGoogle Scholar
  11. 11.
    D. Thompson, Thermoelectric Properties of Silicon Germanium: An In-Depth Study the Reduction of Lattice Thermal Conductivity, PhD Dissertation, Clemson University, 2012Google Scholar
  12. 12.
    J.-P. Fleurial et al., Improved n-type SiGe/GaP thermoelectric materials, in Proceedings of the Eighth Symposium on Space Nuclear Power Systems (1991), p. 451Google Scholar
  13. 13.
    H.J. Goldsmid, A.W. Penn, Boundary scattering of phonons in solid solutions. Phys. Lett. A 27, 523 (1968)CrossRefGoogle Scholar
  14. 14.
    J.E. Parrot, J. Phys. C Solid State Phys. 2, 147 (1969)CrossRefGoogle Scholar
  15. 15.
    D.M. Rowe et al., J. Phys. C. Solid State Phys. 11, 1787 (1978)CrossRefGoogle Scholar
  16. 16.
    D.M. Rowe, R.W. Bunce, J. Phys. D. Appl. Phys. 10, 941 (1977)CrossRefGoogle Scholar
  17. 17.
    R.A. Lefever, G.L. McVay, R.J. Baughman, Part I–III. Mater. Res. Bull. 9(7), 685–692, 735–744, 863–872 (1974)CrossRefGoogle Scholar
  18. 18.
    C. Vining, J. Appl. Phys. 69, 331 (1991)CrossRefGoogle Scholar
  19. 19.
    J.W. Vandersande, C. Wood, S. Draper, Mater. Res. Soc. Symp. Proc. 97(97), 347 (1987)CrossRefGoogle Scholar
  20. 20.
    B.A. Cook et al., Proc. Intersoc. Energy Convers. Eng. Conf., vol 2 (1989), p. 693Google Scholar
  21. 21.
    B.A. Cook, J.L. Harringa, S.H. Han, B.J. Beaudry, J. Appl. Phys. 72(4), 1423–1428 (1992)CrossRefGoogle Scholar
  22. 22.
    B.A. Cook et al., Mater. Res. Soc. Proc. 234, 111 (1991)CrossRefGoogle Scholar
  23. 23.
    B.A. Cook et al., Proceedings of the Eighth Symposium on Space Nuclear Power Systems (1991), p. 431Google Scholar
  24. 24.
    B.A. Cook et al., Proceedings of the 11th International Conference on Thermoelectric Energy Conversion (1992), p. 28Google Scholar
  25. 25.
    A. Balandin et al., Phys. Rev. B 66, 245319 (2002)CrossRefGoogle Scholar
  26. 26.
    A. Balandin et al., Appl. Phys. Lett. 82(3), 415 (2003)CrossRefGoogle Scholar
  27. 27.
    M. Lee, R. Venkatasubramanian, Appl. Phys. Lett. 053112, 92 (2008)Google Scholar
  28. 28.
    L. Vegard, Die konstitution der mischkristalle und die raumfllung der atome. Z. Phys. 5, 17 (1921)CrossRefGoogle Scholar
  29. 29.
    C.B. Vining, W. Laskow, J.O. Hanson, R.R. Van der Beck, P.D. Gorsuch, J. Appl. Phys. 69(8), 4333–4340 (1991)CrossRefGoogle Scholar
  30. 30.
    X.W. Wang et al., Appl. Phys. Lett. 93, 193121 (2008)CrossRefGoogle Scholar
  31. 31.
    G. Joshi et al., Nano Lett. 8(12), 4670–4674 (2008)CrossRefGoogle Scholar
  32. 32.
    G.H. Zhu et al., Phys. Rev. Lett. 102, 196803 (2009)CrossRefGoogle Scholar
  33. 33.
    C. Bera et al., J. Appl. Phys. 108, 124306 (2010)CrossRefGoogle Scholar
  34. 34.
    S.K. Bux et al., Adv. Funct. Mater. 19, 24452452 (2009)CrossRefGoogle Scholar
  35. 35.
    R. Crowe, Industry leaders: Sun shot’s $1 per watt goal feasible (May 2012). http://www.renewableenergyworld.com
  36. 36.
    B. Yu et al., Nano Lett. 12, 2077–2082 (2012)CrossRefGoogle Scholar
  37. 37.
    G. Chen, Recent Trends in Thermoelectric Materials Research III, vol 71 (Academic Press, San Diego, CA, 2001), pp. 203–259CrossRefGoogle Scholar
  38. 38.
    J.P. Heremans, C.M. Thrush, D.T. Morelli, J. Appl. Phys. 98, 063703 (2005)CrossRefGoogle Scholar
  39. 39.
    X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005)CrossRefGoogle Scholar
  40. 40.
    A. Minnich, G. Chen, Appl. Phys. Lett. 91, 073105 (2007)CrossRefGoogle Scholar
  41. 41.
    R.G. Yang, G. Chen, M.S. Dresselhaus, Nano Lett. 5, 1111–1115 (2005)CrossRefGoogle Scholar
  42. 42.
    G.A. Slack, M.A. Hussain, J. Appl. Phys. 70, 2694 (1991)CrossRefGoogle Scholar
  43. 43.
    E.H. Sondheimer, Adv. Phys. 1, 1 (1952). and references thereinCrossRefGoogle Scholar
  44. 44.
    A.F. Mayadas, M. Shatzkes, Phys. Rev. B 1, 1382 (1970)CrossRefGoogle Scholar
  45. 45.
    H. Lee, D.Z. Wang, M.Y. Tang, Z.F. Ren, P. Gogna, J.-P. Fleurial, M.S. Dresselhaus, G. Chen, in International Conference on Thermoelectrics (Clemson, SC, 2005)Google Scholar
  46. 46.
    N.S. Lidorenko, O.M. Narva, L.D. Dudkin, R.S. Erofeev, Inorg. Mater. 6, 1853 (1970)Google Scholar
  47. 47.
    D. Song, G. Chen, Appl. Phys. Lett. 84, 687–689 (2004)CrossRefGoogle Scholar
  48. 48.
    D.W. Song, W.N. Shen, B. Dunn, C.D. Moore, M.S. Goorsky, T. Radetic, R. Gronsky, G. Chen, Appl. Phys. Lett. 84, 1883–1885 (2004)CrossRefGoogle Scholar
  49. 49.
    G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford/New York, 2005)Google Scholar
  50. 50.
    M. Lundstrom, Fundamentals of Carrier Transport, 2nd edn. (Cambridge University Press, Cambridge, 2000)CrossRefGoogle Scholar
  51. 51.
    H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, G. Chen, Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107, 094308 (2010)CrossRefGoogle Scholar
  52. 52.
    H. Lee, Modeling and characterization of thermoelectric properties of SiGe nanocomposites, PhD Thesis, Massachusetts Institute of Technology, May 2009Google Scholar
  53. 53.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics, 1st edn. (Brooks Cole, Belmont, 1976)zbMATHGoogle Scholar
  54. 54.
    B.A. Cook, J.L. Harringa, S.H. Han, C.B. Vining, J. Appl. Phys. 78, 5474 (1995)CrossRefGoogle Scholar
  55. 55.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)CrossRefGoogle Scholar
  56. 56.
    A. Samarelli, L. Ferre, L. Lin, Prospects for SiGe thermoelectric generators (April 2014). www.elsevier.com/locate/sse
  57. 57.
    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 5, 5147–5162 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • N. M. Ravindra
    • 1
  • Bhakti Jariwala
    • 2
  • Asahel Bañobre
    • 3
  • Aniket Maske
    • 3
  1. 1.Department of PhysicsNew Jersey Institute of TechnologyNewarkUSA
  2. 2.New Jersey Institute of TechnologyNewarkUSA
  3. 3.Interdisciplinary Program in Materials Science & Engineering New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations