Advertisement

Thermoelectrics: Physical Mechanisms

  • N. M. Ravindra
  • Bhakti Jariwala
  • Asahel Bañobre
  • Aniket Maske
Chapter
  • 507 Downloads
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

Direct energy conversion from thermal to electrical energy, based on thermoelectric effect, is attractive for potential applications in waste heat recovery and environmentally friendly refrigeration. The energy conversion efficiency of thermoelectric devices is related to the thermoelectric Figure of Merit ZT, which is proportional to the electrical conductivity, the square of the Seebeck coefficient, temperature, and the inverse of the thermal conductivity. Currently, the low ZT values of available materials restrict the large-scale applications of this technology. Recently, however, significant enhancements in ZT have been reported in nanostructures such as superlattices mainly due to their low thermal conductivities. According to the studies on heat transfer mechanisms in nanostructures, the reduced thermal conductivity of nanostructures is mainly attributed to the increased scattering of phonons at the interfaces. Based on this idea, nanocomposites are also expected to have a lower thermal conductivity than their bulk counterparts of the same chemical configuration. Nanocomposites are materials with dimensions of less than 100 nm. They can be fabricated at low cost by mixing nano-sized particles followed by consolidation of nano-sized powders.

Keywords

energyEnergy Power factorPower Factor Seebeck coefficientSeebeck Coefficient currentCurrent Wave vectorWave Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Energy and Environment Report, European Environment Agency, ISBN 978-92-9167-980-5; ISSN 1725-9177; DOI 10.2800/10548, EEA, Copenhagen, 2008Google Scholar
  2. 2.
    Efficient Electrical Energy Transmission and Distribution; International Electrotechnical Commission, 2007, https://books.google.com/books?id=IaQEMwEACAAJ, Geneva, Switzerland
  3. 3.
    J.R. Szczech, J.M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037–4055 (2011).  https://doi.org/10.1039/C0JM02755CCrossRefGoogle Scholar
  4. 4.
    B.R. Nag, Theory of Electrical Transport in Semiconductors (Pergamon Press, New York, 1972)Google Scholar
  5. 5.
    G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, 2001)CrossRefGoogle Scholar
  6. 6.
    Th.J. Seebeck “Magnetische Polarisation der Metalle und Erze Durch Temperatur-Differenz” 1822-23 in Ostwald’s Klassiker der Exakten Wissenshaften Nr. 70. Seebeck Biography 1. Seebeck Biography 2, 1895Google Scholar
  7. 7.
    L. Sebastien, First-principles study of the electronic and thermoelectric properties of Ca3Co4O9, MS Thesis, Universite de Liege, 2013Google Scholar
  8. 8.
    C. Bera. Thermoelectric properties of nanocomposite materials. Engineering Sciences, Ecole Centrale Paris, 2010. English. <NNT: 2010ECAP0027>Google Scholar
  9. 9.
    G.A. Slack, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (Ed), (CRC Press, Boca Raton, 1995)Google Scholar
  10. 10.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)CrossRefGoogle Scholar
  11. 11.
    D.I. Bilc, P. Ghosez, Phys. Rev. B 83, 205204 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Krishnamurthy, A. Sher, A.-B. Chen, Phys. Rev. B 33(2), 1026 (1986)CrossRefGoogle Scholar
  13. 13.
    P. Ghosez, First-principles study of the dielectric and dynamical properties of barium titanate, PhD Thesis, Universite Catholique de Louvain, 1997Google Scholar
  14. 14.
    M. Martín-González, O. Caballero-Calero, P. Díaz-Chao, Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field, www.elsevier.com/locate/rser, September 2012
  15. 15.
    L.D. Hicks, T.C. Harman, M.S. Dresselhaus, Appl. Phys. Lett. 63(23), 3230 (1993)CrossRefGoogle Scholar
  16. 16.
    D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131, 40, (1992)Google Scholar
  17. 17.
  18. 18.
    Structure of Solids, Ionic Solids, The Wurtzite Structure, http://minerva.mlib.cnr.it/mod/book/view.php?id=269&chapterid=106
  19. 19.
    A.R. West, Basic Solid State Chemistry (Wiley, Chichester, 1988), p. 238Google Scholar
  20. 20.
  21. 21.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)zbMATHGoogle Scholar
  22. 22.
    R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, New York, 2004)CrossRefGoogle Scholar
  23. 23.
    J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 2001)CrossRefGoogle Scholar
  24. 24.
    D. Lacroix, K. Joulain, D. Lemonnier, Phys. Rev. B 72(6), 064305-1–064305-11 (2005)Google Scholar
  25. 25.
    C. Kittel, H. Kroemer, Thermal Physics (W. H. Freeman, New York, 1980)Google Scholar
  26. 26.
    C.M. Bhandari, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)Google Scholar
  27. 27.
    H.J. Goldsmid, The Physics of Thermoelectric Energy Conversion, IOP ebooks (Mogan & Claypool Publishers, San Rafael, 2017)CrossRefGoogle Scholar
  28. 28.
    J. Singleton, Band Theory and Electronic Properties of Solids (Oxford University Press, Oxford, 2001)Google Scholar
  29. 29.
    W. Jones, N.H. March, Theoretical Solid State Physics (Wiley- Interscience, London, 1973)Google Scholar
  30. 30.
    J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1964)zbMATHGoogle Scholar
  31. 31.
    T.S. Hutchison, D.C. Baird, The Physics of Engineering Solids (Wiley, New York, 1963)Google Scholar
  32. 32.
    D. Thompson, Thermoelectric Properties of Silicon Germanium: An In-depth Study to the Reduction of Lattice Thermal Conductivity, PhD Dissertation, Clemson University, 2012Google Scholar
  33. 33.
    G.A. Slack, in Solid State Physics, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Eds), vol. 34, (Academic Press, New York, 1979)Google Scholar
  34. 34.
    P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng. R 67(19), 19–63 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Phys. Rev. 133, A1143–A1152 (1964)CrossRefGoogle Scholar
  36. 36.
    D.M. Rowe Ed. Introduction, CRC Handbook of Thermoelectrics, 1995Google Scholar
  37. 37.
    H. Alam, S. Ramakrishna, Nano Energy 2(2), 190–212 (2013)CrossRefGoogle Scholar
  38. 38.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, G. Yang, H. Lee, D. Wang, Z. Ren, P. Jean-, P.G. Fleurial, Adv. Mater. 19(8), 1043–1053 (2007)CrossRefGoogle Scholar
  39. 39.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413(11), 597–602 (2001)CrossRefGoogle Scholar
  40. 40.
    R. Fletcher, M. Tsaousidou, P.T. Coleridge, Y. Feng, Z.R. Wasilewski, Phys. E. 12, 478–481 (2002)CrossRefGoogle Scholar
  41. 41.
    A. Balandin, K.L. Wang, J. Appl. Phys. 84(11), 6149–6153 (1998)CrossRefGoogle Scholar
  42. 42.
    H. Bottner, G. Chen, R. Venkatasubramanian, MRS Bull. 31, 211–217 (2006)Google Scholar
  43. 43.
    R. Venkatasubramanian, Phys. Rev. B 61, 3091–3097 (2000)CrossRefGoogle Scholar
  44. 44.
    C. Gould, N. Shammas, A review of thermoelectric MEMS devices for micro power generation, heating and cooling applications, ed. by K. Takahata (Source: Micro Electronic and Mechanical Systems, 2009), ISBN 978–953, 307–027Google Scholar
  45. 45.
    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 5, 5147–5162 (2012)CrossRefGoogle Scholar
  46. 46.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466–479 (2009)CrossRefGoogle Scholar
  47. 47.
    D. Moore, Novel ZnS nanostructures – synthesis, growth mechanism and application, Georgia Institute of Technology, Oct 2006Google Scholar
  48. 48.
    R. Tubino, Lattice dynamics and spectroscopic properties by a valence force potential of diamond like crystals: C, SiGe, and Sn. J Chem Phys 56(3), 1022 (1972)CrossRefGoogle Scholar
  49. 49.
    S.T. Huxtable, Heat transport in super-lattices and nanowire arrays (University of California, Berkeley, 2002)Google Scholar
  50. 50.
    J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat Nanotechnol 8, 471–473 (2013).  https://doi.org/10.1038/nnano.2013CrossRefGoogle Scholar
  51. 51.
    H. Alam, & S. Ramakrishna, A review on the enhancement of Figure of Merit from bulk to nano-thermoelectric materials, Oct 2012, pp. 203Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • N. M. Ravindra
    • 1
  • Bhakti Jariwala
    • 2
  • Asahel Bañobre
    • 3
  • Aniket Maske
    • 3
  1. 1.Department of PhysicsNew Jersey Institute of TechnologyNewarkUSA
  2. 2.New Jersey Institute of TechnologyNewarkUSA
  3. 3.Interdisciplinary Program in Materials Science & Engineering New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations