Advertisement

Thermoelectric Parameters and Their Optimization

  • N. M. Ravindra
  • Bhakti Jariwala
  • Asahel Bañobre
  • Aniket Maske
Chapter
  • 516 Downloads
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

Thermoelectric phenomenon fundamentally involves the ability to convert thermal energy from a temperature gradient into electrical energy and vice versa by utilizing the benefits of Seebeck effect and Peltier effect. These effects have been introduced in the previous chapter. The performance of thermoelectric materials can be maximized by tailoring the thermoelectric parameters, by requiring high electrical conductivities, large value of Seebeck coefficient, and low thermal conductivities. These thermoelectric parameters are interrelated with each other. Therefore, the key element is to have a thorough knowledge of their dependency as well as their interrelationships for optimizing the Figure of Merit – ZT. This in turn improves the thermoelectric performance resulting, thereby, in increased efficiency of a thermoelectric generator. We consider each of the thermoelectric parameters in this chapter.

Keywords

Thermoelectric Parameters Seebeck coefficientSeebeck Coefficient Electrical conductivityElectrical Conductivity Effective massEffective Mass Charge carriersCharge Carriers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.J. Goldsmid, in Introduction to Thermoelectricity, ed. By (Springer, Berlin Heidelberg, 2010), pp. 23–41; H.J. Goldsmid, in The Physics of Thermoelectric Energy Conversion (Institute of Physics - Concise Physics, Morgan & Claypool, Bristol, 2017), pp. 4-3 to 4-6Google Scholar
  2. 2.
    G.J. Snyder, E.S. Toberer, Complex Thermoelectric Materials. Nat. Mater. 7, 105–114 (2008)CrossRefGoogle Scholar
  3. 3.
    H.J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin Heidelberg, 2010), pp. 43–62Google Scholar
  4. 4.
    A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957)Google Scholar
  5. 5.
    A.F. Ioffe, Physics of Semiconductors (Academic Press, New York, 1960)zbMATHGoogle Scholar
  6. 6.
    F. Suriano, M. Ferri, F. Moscatelli, F. Mancarella, L. Belsito, S. Solmi, A. Roncaglia, S. Frabboni, G.C. Gazzadi, D. Narducci, J. Electron. Mater. 44(1), 371–376 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, T. Day, M.L. Snedaker, H. Wang, S. Krämer, C.S. Birkel, X. Ji, D. Liu, G.J. Snyder, G.D. Stucky, Adv. Mater. 24, 5065–5070 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Gelbstein, Z. Dashevsky, M.P. Dariel, Phys. B Condens. Matter 363, 196–205 (2005)CrossRefGoogle Scholar
  9. 9.
    E.A. Skrabek, D.S. Trimmer, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995), pp. 267–275Google Scholar
  10. 10.
    C.B. Vining, W. Laskow, J.O. Hanson, R.R. Van der Beck, P.D. Gorsuch, J. Appl. Phys. 69, 4333–4340 (1991)CrossRefGoogle Scholar
  11. 11.
    S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, J. Blumm, Appl. Phys. Lett. 88, 042106 (2006)CrossRefGoogle Scholar
  12. 12.
    S.R. Brown, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, Chem. Mater. 18, 1873–1877 (2006)CrossRefGoogle Scholar
  13. 13.
    J.P. Fleurial, T. Caillat, A. Borshchevsky. Skutterudites: An update, in Thermoelectrics, 1997. Proceedings ICT’97. XVI International Conference on. 1997Google Scholar
  14. 14.
    E.S. Toberer, M. Christensen, B.B. Iversen, G.J. Snyder, Phys. Rev. B 77, 075203 (2008)CrossRefGoogle Scholar
  15. 15.
    T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Phys. Chem. Solids 58, 1119–1125 (1997)CrossRefGoogle Scholar
  16. 16.
    K. Kurosaki, A. Kosuga, H. Muta, M. Uno, S. Yamanaka, Appl. Phys. Lett. 87, 061919 (2005)CrossRefGoogle Scholar
  17. 17.
    A.F. May, J.-P. Fleurial, G.J. Snyder, Phys. Rev. B 78, 125205 (2008)CrossRefGoogle Scholar
  18. 18.
    Z.-G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci. Mater. Int. 22, 535–549 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • N. M. Ravindra
    • 1
  • Bhakti Jariwala
    • 2
  • Asahel Bañobre
    • 3
  • Aniket Maske
    • 3
  1. 1.Department of PhysicsNew Jersey Institute of TechnologyNewarkUSA
  2. 2.New Jersey Institute of TechnologyNewarkUSA
  3. 3.Interdisciplinary Program in Materials Science & Engineering New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations