Skip to main content

Thermal Annealing of Ion Tracks

  • Chapter
  • First Online:
Ion Tracks in Apatite and Quartz

Part of the book series: Springer Theses ((Springer Theses))

  • 190 Accesses

Abstract

At ambient temperatures, ion tracks in minerals are known to be stable and fairly constant in size. Even over geological timescales, in the range of hundreds of million years, only small reductions in length occur [1]. This changes dramatically when the tracks are exposed to elevated temperatures, leading to a recrystallisation of the damaged structure and a shrinkage in track size (i.e. length and radius). This process is extremely temperature-dependent, with a full recovery and disappearance of all tracks at 170–200 \(^{\circ }\)C over geological timescales of 10\(^{6}\) years [2]. When annealed at 350–400 \(^{\circ }\)C, however, a duration of less than 1 hr is sufficient to fully erase all tracks [3]. This is a result of the rate of recrystallization being typically associated with an exponential dependence of the diffusion rate of the displaced atoms incorporated in the ion tracks on temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although diffraction patterns typically are displayed as a function of 2\(\theta \), this work shows them as a function of \(q=4\pi \sin (\theta )/\lambda \) to eliminate the energy-dependence and to remain consistent with SAXS.

  2. 2.

    All pressures were obtained by ruby fluorescence. An analysis of the shift of the (210), (310), and (002) peaks at 11 GPa yields similar values as attributed to only 8 GPa by Matsukage et al. [54]. Although this value is different from 11 GPa, this discrepancy has no effect on the conclusions of the following work, as only pressures up to 1–2 GPa are discussed.

References

  1. G.A. Wagner, P. Van den Haute, Fission-Track Dating (Kluwer Academic Publishers, Dordrecht, 1992)

    Book  Google Scholar 

  2. C.W. Naeser, H. Faul, Fission track annealing in apatite and sphene. J. Geophys. Res. 74(2), 705–710 (1969)

    Article  ADS  Google Scholar 

  3. B. Afra, M. Lang, T. Bierschenk, M.D. Rodriguez, W.J. Weber, C. Trautmann, R.C. Ewing, N. Kirby, P. Kluth, Annealing behaviour of ion tracks in olivine, apatite and britholite. Nucl. Instrum. Meth. Phys. Res. B 326, 126 (2014)

    Article  ADS  Google Scholar 

  4. J.S. Schmidt, M.L.M.V. Lelarge, R.V. Conceicao, N.M. Balzaretti, Experimental evidence regarding the pressure dependence of fission track annealing in apatite. Earth Planet. Sci. Lett. 390, 1–7 (2014)

    Article  ADS  Google Scholar 

  5. A.S. Wendt, O. Vidal, L.T. Chadderton, Experimental evidence for the pressure dependence of fission track annealing in apatite. Earth Planet. Sci. Lett. 201, 593–607 (2002)

    Article  ADS  Google Scholar 

  6. O. Vidal, A.S. Wendt, L.T. Chadderton,Further discussion on the pressure dependence of fission track annealing in apatite: reply to the critical comment of Kohn, et al., Earth Planet. Sci. Lett. 215(1–2), 307–316 (2003)

    Google Scholar 

  7. R. Donelick, K. Farley, P. O’Sullivan, P. Asimow, Experimental evidence concerning the pressure dependence of He diffusion and fission-track annealing kinetics in apatite. On track: Newsl. Int. Fission-track Commun. 13(2), 19–21 (2003)

    Google Scholar 

  8. B.P. Kohn, D.X. Belton, R.W. Brown, A.J.W. Gleadow, P.F. Green, J.F. Lovering, Comment on: Experimental evidence for the pressure dependence of fission track annealing in apatite by A.S. Wendt, et al., Earth Planet. Sci. Lett. 201 (2002) 593. Earth Planet. Sci. Lett. 215, 299–306 (2003)

    Google Scholar 

  9. D. Schauries, A.A. Leino, B. Afra, M.D. Rodriguez, F. Djurabekova, K. Nordlund, N. Kirby, C. Trautmann, P. Kluth, Orientation dependent annealing kinetics of ion tracks in c-SiO\(_2\). J. Appl. Phys. 118, 224305 (2015)

    Article  ADS  Google Scholar 

  10. A.S. Sandhu, S. Singh, H.S. Virk, Anisotropic etching and annealing of fission tracks in quartz. Mineralogical J. 14(1), 1–11 (1988)

    Article  ADS  Google Scholar 

  11. T. Sawamura, S. Baba, M. Narita, Anisotropic annealing of fission fragments in synthetic quartz. Radiat. Meas. 30(4), 453–459 (1999)

    Article  Google Scholar 

  12. T. Sawamura, S. Baba, H. Yamazaki, Effect of twinning caused by thermal annealing on etched tracks in synthetic quartz. Jpn. J. Appl. Phys. 30(No. 2A), L212–L214 (1991)

    Google Scholar 

  13. S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection (Pergamon Press, Oxford, 1987)

    Google Scholar 

  14. A.J.W. Gleadow, D.X. Belton, B.P. Kohn, R.W. Brown, Fission track dating of phosphate minerals and the thermochronology of apatite. Rev. Mineral. Geochem. 48(1), 579 (2002)

    Article  Google Scholar 

  15. I.G. Berzina Ya.E. Geguzin, I.V Vorob’eva, Thermal stability of uranium fission fragment tracks in muscovite single crystals (effect of anisotropy). Soviet Phys. Solid St. 10, 1431–1434 (1968)

    Google Scholar 

  16. P.F. Green, S.A. Durrani, Annealing studies of tracks in crystals. Nucl. Track Detect. 1(1), 33–39 (1977)

    Article  Google Scholar 

  17. John B. Brady, Diffusion Data for Silicate Minerals, Glasses, and Liquids (American Geophysical Union, 1995)

    Google Scholar 

  18. D.J. Cherniak, Diffusion in quartz, melilite, dilivsyr perovskite and mullite. Rev. Mineral. Geochem. 72, 735–756 (2010)

    Article  Google Scholar 

  19. M.L.F. Nascimento, E.D. Zanotto, Mechanisms and dynamics of crystal growth, viscous flow, and self-diffusion in silica glass. Phys. Rev. B 73, 024209 (2006)

    Article  ADS  Google Scholar 

  20. Website quartz, http://www.quartzpage.de/

  21. P.J. Heaney, Structure and chemistry of the low-pressure silica polymorphs. Rev. Mineral. 29, 1–40 (1994)

    Google Scholar 

  22. D. Schauries, B. Afra, M.D. Rodriguez, C. Trautmann, A. Hawley, P. Kluth, Ion track annealing in quartz investigated by small angle X-ray scattering. Nucl. Instrum. Methods Phys. Res. Sect. B. Mater. Atoms 365, 380–383 (2015)

    Google Scholar 

  23. W. Li, L. Wang, M. Lang, Ch. Trautmann, R.C. Ewing, Thermal annealing mechanisms of latent fission tracks: apatite vs. zircon. Earth Planet. Sci. Lett. 302(1–2), 227–235 (2011)

    Article  ADS  Google Scholar 

  24. A. Aframian, Track retaining properties of quartz for high temperature in-core neutron fluence measurements. Radiat. Effects 33(2), 95–100 (1977)

    Article  Google Scholar 

  25. B. Afra, K. Nordlund, M.D. Rodriguez, T. Bierschenk, C. Trautmann, S. Mudie, P. Kluth, Thermal response of nanoscale cylindrical inclusions of amorphous silica embedded in \(\alpha \)-quartz. Phys. Rev. B 90, 224108 (2014)

    Article  ADS  Google Scholar 

  26. J. Burchart, J. Galazka-Friedman, J. Kral, Experimental artifacts in fission-track annealing curves. Nucl. Tracks 5, 113–120 (1981)

    Article  Google Scholar 

  27. P.F. Green, I.R. Duddy, A.J.W. Gleadow, P.R. Tingate, G.M. Laslett, Fission-track annealing in apatite: Track length measurements and the form of the Arrhenius plot. Nucl. Tracks Radiat. Meas. (1982), 10(3), 323–328 (1985)

    Google Scholar 

  28. G .M. Laslett, P .F. Green, I .R. Duddy, A .J .W. Gleadow, Thermal annealing of fission tracks in apatite. a quantitative analysis. Chem. Geol.: Isot. Geosci. Sect. 65(1), 1–13 (1987)

    Google Scholar 

  29. H.S. Virk, Single-activation-energy model of radiation damage in solid-state nuclear-track detectors. Curr. Sci. 61, 386–390 (1991)

    Google Scholar 

  30. R.A. Ketcham, R.A. Donelick, W.D. Carlson, Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales. Am. Mineral. 84(9), 1235–1255 (1999)

    Article  ADS  Google Scholar 

  31. R.A. Ketcham, A. Carter, R.A. Donelick, J. Barbarand, A.J. Hurford, Improved modeling of fission-track annealing in apatite. Am. Mineral. 92(5–6), 799–810 (2007)

    Article  ADS  Google Scholar 

  32. A.C. Damask, G.J. Dienes, Point Defects in Metals (Gordon and Breach Science, Philadelphia, 1963)

    Google Scholar 

  33. S. Gasiorek, S. Dhar, K.P. Lieb, Epitaxial recrystallization of Rb-irradiated \(\alpha \)-quartz during thermal annealing in air. Nucl. Instrum. Meth. Phys. Res. B 193, 283–287 (2002)

    Article  ADS  Google Scholar 

  34. F.E. Wagstaff, K.J. Richards, Kinetics of Crystallization of Stoichiometric SiO2 Glass in H2O Atmospheres. J. Am. Ceramic Soc. 49, 118–121 (1966)

    Article  Google Scholar 

  35. P.M. Ihlen Axel Müller, J. Egil Wanvik, Quartz: Deposits, Mineralogy and Analytics (Springer Geology, 2012)

    Google Scholar 

  36. W. Primak, H. Szymanski, Radiation damage in vitreous silica: annealing of the density changes. Phys. Rev. 101, 1268–1271 (1956)

    Article  ADS  Google Scholar 

  37. A.J.W. Gleadow, I.R. Duddy, A natural long-term track annealing experiment for apatite. Nucl. Tracks 5, 169–174 (1981)

    Article  Google Scholar 

  38. P.F. Green, Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene. Chem. Geol.: Isot. Geosci. Sect. 58(1), 1–22 (1985)

    Google Scholar 

  39. P.F. Green, I.R. Duddy, A.J.W. Gleadow, P.R. Tingate, G.M. Laslett, Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chem. Geol.: Isot. Geosci. Sect. 59, 237–253 (1986). Calibration of the Phanerozoic Time Scale

    Google Scholar 

  40. J. Barbarand, A. Carter, I. Wood, T. Hurford, Compositional and structural control of fission-track annealing in apatite. Chem. Geol. 198, 107–137 (2003)

    Article  ADS  Google Scholar 

  41. Beno Gutenberg, Physics of the Earth’s Interior (Academic Press, New York, 1959)

    MATH  Google Scholar 

  42. R.L. Fleischer, P.B. Price, R.M. Walker, Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. J. Geophys. Res. 70(6), 1497–1502 (1965)

    Article  ADS  Google Scholar 

  43. M.R. Brix, B. Stoeckhert, E. Seidel, T. Theye, S.N. Thomson, M. Koester, Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349, 309–326 (2002). Low Temperature Thermochronology: From Tectonics to Landscape Evolution

    Google Scholar 

  44. B. Afra. In situ annealing of ion tracks in apatite (unpublished) (2014)

    Google Scholar 

  45. B. Afra, M. Lang, M.D. Rodriguez, J. Zhang, R. Giulian, N. Kirby, R.C. Ewing, C. Trautmann, M. Toulemonde, P. Kluth, Annealing kinetics of latent particle tracks in Durango apatite. Phys. Rev. B 83, 064116 (2011)

    Article  ADS  Google Scholar 

  46. A. Nadzri, D. Schauries, P. Mota-Santiago, S. Muradoglu, C. Trautmann, A. J. W. Gleadow, A. Hawley, and P. Kluth. Composition dependent thermal annealing behaviour of ion tracks in apatite. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 379:211 – 214, 2016. 18th International Conference on Radiation Effects in Insulators (REI-18) Dates: 26th to 31st October, (2015)

    Google Scholar 

  47. H.S. Virk, Modgil-Virk formulation of single activation energy model of radiation damage annealing in SSNTDs: a critical appraisal. Solid State Phenomena 239, 215–242 (2015)

    Article  Google Scholar 

  48. A.S. Sandhu, S. Singh, H.S. Virk, Activation energy of track annealing in minerals as a function of interatomic spacing. Int. J. Radiat. Appl. Instrum. Part D. Nucl. Tracks Radiat. Meas. 15(1–4), 235–238 (1988). Special Volume Solid State Nuclear Track Detectors

    Google Scholar 

  49. S.K. Modgil, H.S. Virk, Annealing of fission fragment tracks in inorganic solids. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. with Mater. Atoms 12(2), 212–218 (1985)

    Google Scholar 

  50. A. Raymond, Donelick, Crystallographic orientation dependence of mean etchable fission track length in apatite; an empirical model and experimental observations. Am. Mineral. 76(1–2), 83–91 (1991)

    Google Scholar 

  51. R.A. Donelick, M.K. Roden, J.D. Mooers, B.S. Carpenter, D.S. Miller, Etchable length reduction of induced fission tracks in apatite at room temperature: crystallographic orientation effects and initial mean lengths. Int. J. Radiat. Appl. Instrum. Part D. Nucl. Tracks Radiat. Meas. 17(3), 261–265 (1990)

    Article  Google Scholar 

  52. S. Watt, P.F. Green, S.A. Durrani, Special volume: Solid state nuclear track detectors studies of annealing anisotropy of fission tracks in mineral apatite using track-in-track (tint) length measurements. Nucl. Tracks Radiat. Meas. (1982) 8(1), 371–375 (1984)

    Google Scholar 

  53. W. Li, P. Kluth, D. Schauries, M.D. Rodriguez, M. Lang, F. Zhang, M. Zdorovets, Ch. Trautmann, R.C. Ewing, Effect of orientation on ion track formation in apatite and zircon. Am. Mineral. 99(5–6), 1127–1132 (2014)

    Article  ADS  Google Scholar 

  54. K.N. Matsukage, S. Ono, T. Kawamoto, T. Kikegawa, The compressibility of a natural apatite. Phys. Chem. Miner. 31(9), 580–584 (2004)

    Article  ADS  Google Scholar 

  55. Q. Williams, E. Knittle, Infrared and raman spectra of Ca\(_5\)(PO\(_4\))\(_3\)F\(_2\)-fluorapatite at high pressures: compression-induced changes in phosphate site and Davydov splittings. J. Phys. Chem. Solids 57(4), 417–422 (1996)

    Article  ADS  Google Scholar 

  56. R.L. Fleischer, R.T. Woods, H.R. Hart, P.B. Price, N.M. Short, Effect of shock on fission track dating of apatite and sphene crystals from the Hardhat and Sedan underground nuclear explosions. J. Geophys. Res. 79(2), 339–342 (1974)

    Article  ADS  Google Scholar 

  57. P. Kluth, M. Lang, M.D. Rodriguez, D. Schauries, B. Haberll, J. Bradby, B. Schuster, B. Afra, R. Miletich, C. Trautmann, N. Kirby, R.C. Ewing, Influence of high-pressure on the formation and stability of simulated fission tracks in Durango apatite. in preparation, n.a.:n.a., (2016)

    Google Scholar 

  58. P. Schouwink, R. Miletich, A. Ullrich, U.A. Glasmacher, Ch. Trautmann, R. Neumann, B.P. Kohn, Ion tracks in apatite at high pressures: the effect of crystallographic track orientation on the elastic properties of fluorapatite under hydrostatic compression. Phys. Chem. Miner. 37(6), 371–387 (2009)

    Article  ADS  Google Scholar 

  59. J. Barbarand, T. Hurford, A. Carter, Variation in apatite fission-track length measurement: Implications for thermal history modelling. Chem. Geol. 198, 00423 (2003)

    Google Scholar 

  60. H. Keppler, D.J. Forst, Introduction to Minerals Under Extreme Conditions in Mineral Behaviour at Extreme Conditions, vol. 7 (University Press, Heidelberg, Germany, 2005)

    Google Scholar 

  61. R. Donelick, K. Farley, P. Asimow P. O’Sullivan, Experimental evidence concerning the pressure dependence of He diffusion and fission-track annealing kinetics in apatite. Geochimica et Cosmochimica Acta, 67, Supplement 82 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schauries .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schauries, D. (2018). Thermal Annealing of Ion Tracks. In: Ion Tracks in Apatite and Quartz. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96283-2_7

Download citation

Publish with us

Policies and ethics