Skip to main content

Track Formation Under Temperature and Pressure

  • Chapter
  • First Online:
  • 182 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter discusses the influence of two external ion irradiation parameters on ion track formation: temperature and pressure. In natural environments where fission tracks are generated, both parameters can be significantly elevated compared with ambient conditions. This particularly applies to fission tracks formed several thousand metres below the earth’s surface, which are relevant for oil and gas exploration (Augustine et al., in Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering, 2006, [1]). The majority of irradiation experiments that simulate fission tracks, however, are conducted under ambient conditions for practical reasons. Lang et al. have investigated track formation under high temperature (\(250\,^{\circ }\hbox {C}\)) and in the presence of elevated pressure (0.75 GPa), by irradiating zircon within a heatable high-pressure cell (Lang et al., in Earth Planet Sci Lett 274, 355–358, 2008, [2]). The track sizes were measured with TEM and indicate a small, positive correlation between track cross-section and a simultaneous increase in temperature and pressure during track formation. The present work systematically investigates the influences of temperature and pressure independently in quartz and apatite. The results are explained by using existing models for track formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ch. Augustine, J.W. Tester, B. Anderson, S. Petty, B. Livesay, A comparison of geothermal with oil and gas well drilling costs, in Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering (2006)

    Google Scholar 

  2. M. Lang, J. Lian, F. Zhang, B.W.H. Hendriks, Ch. Trautmann, R. Neumann, R.C. Ewing, Fission tracks simulated by swift heavy ions at crustal pressures and temperatures. Earth Planet. Sci. Lett. 274, 355–358 (2008)

    Article  ADS  Google Scholar 

  3. F. Lisker, B. Ventura, U.A. Glasmacher, Apatite thermochronology in modern geology. Geol. Soc. Lond. Spec. Publ. 324(1), 1–23 (2009)

    Article  ADS  Google Scholar 

  4. G.A. Wagner, P. Van den Haute, Fission-Track Dating (Kluwer Academic Publishers, 1992)

    Google Scholar 

  5. H. Martin, Dodson, Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 40(3), 259–274 (1973)

    Article  Google Scholar 

  6. C. Houpert, F. Studer, H. Pascard, J. YunFan, M. Toulemonde, Influence of the substrate temperature on the latent track damage cross section in magnetic insulators. Nucl. Tracks Radiat. Meas. 19, 85 (1991)

    Article  Google Scholar 

  7. K. Schwartz, A. Benyagoub, M. Toulemonde, Ch. Trautmann, Effect of temperature on track formation by energetic heavy ions in lithium fluoride. Radiat. Eff. Defects Solids 155(1–4), 127–131 (2001)

    Article  ADS  Google Scholar 

  8. D. Schauries, M. Lang, O.H. Pakarinen, S. Botis, B. Afra, M.D. Rodriguez, F. Djurabekova, K. Nordlund, D. Severin, M. Bender, W.X. Li, C. Trautmann, R.C. Ewing, N. Kirby, P. Kluth, Temperature dependence of ion track formation in quartz and apatite. J. Appl. Crystallogr. 46(6), 1558–1563 (2013)

    Article  Google Scholar 

  9. B. Afra, M. Lang, M.D. Rodriguez, J. Zhang, R. Giulian, N. Kirby, R.C. Ewing, C. Trautmann, M. Toulemonde, P. Kluth, Annealing kinetics of latent particle tracks in Durango apatite. Phys. Rev. B 83, 064116 (2011)

    Article  ADS  Google Scholar 

  10. W. Li, M. Lang, A.J.W. Geladow, M.V. Zdorovets, R.C. Ewing, Thermal annealing of unetched fission tracks in apatite. Earth Planet. Sci. Lett. 321, 121–127 (2012)

    Article  ADS  Google Scholar 

  11. B. Afra, M.D. Rodriguez, C. Trautmann, O.H. Pakarinen, F. Djurabekova, K. Nordlund, T. Bierschenk, R. Giulian, M.C. Ridgway, G. Rizza, N. Kirby, M. Toulemonde, P. Kluth, Saxs investigations of the morphology of swift heavy ion tracks in alpha-quartz. J. Phys.: Condens. Matter 25(4), 045006 (2013)

    ADS  Google Scholar 

  12. B. Afra, M. Lang, T. Bierschenk, M.D. Rodriguez, W.J. Weber, C. Trautmann, R.C. Ewing, N. Kirby, P. Kluth, Annealing behaviour of ion tracks in olivine, apatite and britholite. Nucl. Instrum. Meth. Phys. Res. B 326, 126 (2014)

    Article  ADS  Google Scholar 

  13. M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, C. Trautmann, Nanometric transformation of the matter by short and intense electronic excitation: experimental data versus inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 277, 28 (2012). (Basic Research on Ionic-Covalent Materials for Nuclear Applications)

    Google Scholar 

  14. Ch. Trautmann, M. Toulemonde, K. Schwartz, J.M. Costantini, A. Müller, Damage structure in the ionic crystal LiF irradiated with swift heavy ions. Nucl. Instrum. Meth. Phys. Res. B 164–165, 365–376 (2000)

    Article  ADS  Google Scholar 

  15. S. Klaumünzer, Ion tracks in quartz and vitreous silica. Nucl. Instrum. Meth. Phys. Res. B 225, 136–153 (2004)

    Article  ADS  Google Scholar 

  16. Sankar Dhar, Wolfgang Bolse, Klaus-Peter Lieb, Ion-beam induced amorphization and dynamic epitaxial recrystallization in alpha-quartz. J. Appl. Phys. 85(6), 3120–3123 (1999)

    Article  ADS  Google Scholar 

  17. W. Jiang, Y. Zhang, W.J. Weber, Temperature dependence of disorder accumulation and amorphization in Au-ion-irradiated 6H-SiC. Phys. Rev. B 70, 165208 (2004)

    Article  ADS  Google Scholar 

  18. M. Lang, The effect of Pressure on Ion Track Formation in Minerals. Ph.D. thesis, Heidelberg University (2004)

    Google Scholar 

  19. A. Meftah, F. Brisard, J.M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer, M. Toulemonde, Track formation in SiO\(_{2}\) quartz and the thermal-spike mechanism. Phys. Rev. B 49, 12457–12463 (1994)

    Google Scholar 

  20. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985)

    Book  Google Scholar 

  21. M. Lang, U.A. Glasmacher, R. Neumann, D. Schardt, C. Trautmann, G.A. Wagner, Energy loss of 50-GeV uranium ions in natural diamond. Appl. Phys. A 80(4), 691–694 (2005)

    Article  ADS  Google Scholar 

  22. D. Schwen, E.M. Bringa, Atomistic simulations of swift ion tracks in diamond and graphite. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 256(1), 187–192 (2007)

    Google Scholar 

  23. M. Toulemonde, iTS Calculations of Track Formation with Pressure in Quartz (Unpublished)

    Google Scholar 

  24. T. Yamanaka, T. Fukuda, J. Mimaki, Bonding character of SiO2 stishovite under high pressures up to 30 GPa. Phys. Chem. Miner. 29(9), 633–641 (2002)

    Article  ADS  Google Scholar 

  25. G. Shen, N. Sata, N. Taberlet, M. Newville, M.L. Rivers, S.R. Sutton, Melting studies of indium: determination of the structure and density of melts at high pressures and high temperatures. J. Phys.: Condens. Matter 14(44), 10533 (2002)

    ADS  Google Scholar 

  26. M. Toulemonde, Experimental results and model calculations for electronic sputtering of vitreous SiO2 compared to crystalline SiO2, in Radiation Effects in Insulators (2015)

    Google Scholar 

  27. K. Nordlund, MD Simulations on the Formation of Ion Tracks Under Pressure in Quartz

    Google Scholar 

  28. A.A. Leino, S.L. Daraszewicz, O.H. Pakarinen, K. Nordlund, F. Djurabekova, Atomistic two-temperature modelling of ion track formation in silicon dioxide. Europhys. Lett. 110(1), 16004 (2015)

    Article  ADS  Google Scholar 

  29. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schauries .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schauries, D. (2018). Track Formation Under Temperature and Pressure. In: Ion Tracks in Apatite and Quartz. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96283-2_6

Download citation

Publish with us

Policies and ethics