Skip to main content

Inelastic Electron Injection in Water

  • Chapter
  • First Online:
Real-Time Quantum Dynamics of Electron–Phonon Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 370 Accesses

Abstract

When high-energy radiation penetrates living cells, it ionizes molecules along its path and can cause cell death by damaging DNA. Radiation events involve a sequence of processes that ultimately require a clear microscopic understanding [1]. Only about one third of the cellular damage is produced by direct interaction of the ionizing radiation with DNA, while the rest is due to secondary species, produced in the first hundreds to thousands of femtoseconds following the primary irradiation of the system [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, by Landauer result we mean the elastic current as an integral of the transmission from Eq. (8.1) without any phonon.

  2. 2.

    We used the software CP2K [24] with PBE functional and a 6311G** basis.

References

  1. Baccarelli, I., I. Bald, F.A. Gianturco, E. Illenberger, and J. Kopyra. 2011. Electron-induced damage of DNA and its components: Experiments and theoretical models. Physics Reports 508 (1–2): 1–44. https://doi.org/10.1016/j.physrep.2011.06.004.

    Article  ADS  Google Scholar 

  2. Michael, B.D. 2000. A sting in the tail of electron tracks. Science 287 (5458): 1603–1604. https://doi.org/10.1126/science.287.5458.1603.

    Article  Google Scholar 

  3. Alizadeh, E., T.M. Orlando, and L. Sanche. 2015. Biomolecular damage induced by ionizing radiation: The direct and indirect effects of low-energy electrons on DNA. Annual Review of Physical Chemistry 66: 379–98. https://doi.org/10.1146/annurev-physchem-040513-103605.

    Article  ADS  Google Scholar 

  4. Pimblott, S.M., and J.A. LaVerne. 2007. Production of low-energy electrons by ionizing radiation. Radiation Physics and Chemistry 76 (8–9): 1244–1247. https://doi.org/10.1016/j.radphyschem.2007.02.012.

    Article  ADS  Google Scholar 

  5. Boudaïffa, B., P. Cloutier, D. Hunting, M. Huels, and L. Sanche. 2000. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287 (5458): 1658–1660. https://doi.org/10.1126/science.287.5458.1658.

  6. Martin, F., P. Burrow, Z. Cai, P. Cloutier, D. Hunting, and L. Sanche. 2004. DNA strand breaks induced by 0–4 eV electrons: The role of shape resonances. Physical Review Letters 93 (6): 068101. https://doi.org/10.1103/PhysRevLett.93.068101.

  7. Cho, W., M. Michaud, and L. Sanche. 2004. Vibrational and electronic excitations of H\(_{2}\)O on thymine films induced by low-energy electrons. The Journal of Chemical Physics 121 (22): 11289. https://doi.org/10.1063/1.1814057.

    Article  ADS  Google Scholar 

  8. Simons, J. 2006. How do low-energy (0.1 – 2 eV) electrons cause DNA strand breaks? Accounts of Chemical Research 39 (10): 772–779. https://doi.org/10.1021/ar0680769.

    Article  Google Scholar 

  9. Rizzi, V., T.N. Todorov, and J.J. Kohanoff. 2017. Inelastic electron injection in a water chain. Scientific Reports 7: 45410. https://doi.org/10.1038/srep45410.

    Article  ADS  Google Scholar 

  10. Cooper, G.M. 2000. The Cell: A Molecular Approach, 2nd ed. Sunderland, MA: Sinauer Associates. ISBN 9780878931064.

    Google Scholar 

  11. Peskin, U., A. Edlund, I. Bar-On, M. Galperin, A. Nitzan, and Å. Edlund. 1999. Transient resonance structures in electron tunneling through water. The Journal of Chemical Physics 111 (16): 7558. https://doi.org/10.1063/1.480082.

    Article  ADS  Google Scholar 

  12. Galperin, M., A. Nitzan, and U. Peskin. 2001. Traversal time for electron tunneling in water. Journal of Chemical Physics 114 (21): 9205–9208. https://doi.org/10.1063/1.1376162.

  13. Galperin, M., and A. Nitzan. 2001. Inelastic effects in electron tunneling through water layers. The Journal of Chemical Physics 115 (6): 2681–2694. https://doi.org/10.1063/1.1383991.

    Article  ADS  Google Scholar 

  14. Smyth M., and J. Kohanoff. 2011. Excess electron localization in solvated DNA bases. Physical Review Letters 106 (23): 238108. https://doi.org/10.1103/PhysRevLett.106.238108

  15. McAllister, M., M. Smyth, B. Gu, G.A. Tribello, and J. Kohanoff. 2015. Understanding the interaction between low-energy electrons and DNA nucleotides in aqueous solution. The Journal of Physical Chemistry Letters 6 (15): 3091–3097. https://doi.org/10.1021/acs.jpclett.5b01011.

    Article  Google Scholar 

  16. Paxton, A.T., and J.J. Kohanoff. 2011. A tight binding model for water. The Journal of chemical physics 134 (4): 044130. https://doi.org/10.1063/1.3523983.

    Article  ADS  Google Scholar 

  17. Lide, D., and D. Tildesley. 2002. CRC handbook of chemistry and physics, 83rd ed. Boca Raton, Florida: Chemical Rubber Publishing Company.

    Google Scholar 

  18. Lide, D.R. (2005). CRC handbook of chemistry and physics, 85th ed. CRC press, no. v. 85. ISBN 9780849304859.

    Google Scholar 

  19. Todorov, T.N. 2002. Tight-binding simulation of current-carrying nanostructures. Journal of Physics: Condensed Matter 14 (11): 3049–3084. https://doi.org/10.1088/0953-8984/14/11/314.

    Article  ADS  Google Scholar 

  20. Paulsson, M., T. Frederiksen, and M. Brandbyge. 2005. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions. Physical Review B–Condensed Matter and Materials Physics 72 (20): 1–4. https://doi.org/10.1103/PhysRevB.72.201101.

    Article  Google Scholar 

  21. Frederiksen, T., N. Lorente, M. Paulsson, and M. Brandbyge. 2007. From tunneling to contact: Inelastic signals in an atomic gold junction from first principles. Physical Review B-Condensed Matter and Materials Physics 75 (23): 1–8. https://doi.org/10.1103/PhysRevB.75.235441.

  22. McEniry, E., T. Frederiksen, T. Todorov, D. Dundas, and A. Horsfield. 2008. Inelastic quantum transport in nanostructures: The self-consistent born approximation and correlated electron-ion dynamics. Physical Review B 78 (3): 035446. https://doi.org/10.1103/PhysRevB.78.035446.

    Article  ADS  Google Scholar 

  23. X. Andrade, S. Hamel, and A. A. Correa. 2017. Non-linear conductivity of metals from real-time quantum simulations, pp. 1–8. arXiv: 1702.00411.

  24. VandeVondele, J., M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter. 2005. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Computer Physics Communications 167 (2): 103–128. https://doi.org/10.1016/j.cpc.2004.12.014.

    Article  ADS  Google Scholar 

  25. Goodwin, L., A.J. Skinner, and D.G. Pettifor. 1989. Generating transferable tight-binding parameters: Application to silicon. Europhysics Letters (EPL) 9 (7): 701–706. https://doi.org/10.1209/0295-5075/9/7/015.

    Article  ADS  Google Scholar 

  26. Harrison, W. 1980. Electronic structure and the properties of solids. San Francisco: W.H. Freeman.

    Google Scholar 

  27. Fang, C., W.-F. Li, R.S. Koster, J. Klimeš, A. van Blaaderen, and M.A. van Huis. 2015. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations. Physical Chemistry Chemical Physics 17 (1): 365–375. https://doi.org/10.1039/C4CP04202F.

    Article  Google Scholar 

  28. McEniry, E.J., T.N. Todorov, and D. Dundas. 2009. Current-assisted cooling in atomic wires. Journal of Physics: Condensed Matter 21 (19): 195304. https://doi.org/10.1088/0953-8984/21/19/195304.

    Article  ADS  Google Scholar 

  29. Frederiksen, T., M. Paulsson, M. Brandbyge, and A.-P. Jauho. 2007. Inelastic transport theory from first principles: Methodology and application to nanoscale devices. Physical Review B 75 (20): 205413. https://doi.org/10.1103/PhysRevB.75.205413.

    Article  ADS  Google Scholar 

  30. Haxton, D.J., Z. Zhang, H.-D. Meyer, T.N. Rescigno, and C.W. McCurdy. 2004. Dynamics of dissociative attachment of electrons to water through the 2B1 metastable state of the anion. Physical Review A 69 (6): 062714. https://doi.org/10.1103/PhysRevA.69.062714

  31. Smyth, M., J. Kohanoff, and I.I. Fabrikant. 2014. Electron-induced hydrogen loss in uracil in a water cluster environment. The Journal of Chemical Physics 140 (18): 184313. https://doi.org/10.1063/1.4874841.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Rizzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzi, V. (2018). Inelastic Electron Injection in Water. In: Real-Time Quantum Dynamics of Electron–Phonon Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96280-1_8

Download citation

Publish with us

Policies and ethics