Skip to main content

Accelerated Simulation of Sphere Packings Using Parallel Hardware

  • Conference paper
  • First Online:
Simulation Science (SimScience 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 889))

Included in the following conference series:

Abstract

The simulation of dry particle packings and their geometrical properties is of great importance to material sciences. Substantial acceleration of the simulation can be obtained using parallel hardware (GPU), but this requires specialized data structures and algorithms. We present a parallel version of the so-called collective rearrangement algorithm that allows to simulate random close packings of up to several million spherical particles from an arbitrary particle size distribution. The empirical time complexity of our implementation is almost linear in the number of spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bezrukov, A., Bargiel, M., Stoyan, D.: Statistical analysis of simulated random packings of spheres. Part. Part. Syst. Charact. 19(2), 111–118 (2002)

    Article  Google Scholar 

  2. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  3. Green, S.: Particle simulation using CUDA. NVIDIA Whitepaper 6, 121–128 (2010)

    Google Scholar 

  4. Gu, F., Yang, Z., Kolonko, M., Grosch, T.: Interactive visualization of gaps and overlaps for large and dynamic sphere packings. In: Hullin, M., Klein, R., Schultz, T., Yao, A. (eds.) Vision, Modeling & Visualization. The Eurographics Association (2017)

    Google Scholar 

  5. He, D., Ekere, N.N., Cai, L.: Computer simulation of random packing of unequal particles. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 60(6), 7098–7104 (1999)

    Article  Google Scholar 

  6. Kolonko, M., Raschdorf, S., Wäsch, D.: A hierarchical approach to simulate the packing density of particle mixtures on a computer. Granular Matter 12(6), 629–643 (2010)

    Article  Google Scholar 

  7. de Larrard, F., Sedran, T.: Optimization of ultra-high-performance concrete by the use of a packing model. Cem. Concr. Res. 24(6), 997–1009 (1994)

    Article  Google Scholar 

  8. Mock, S.: Simulation von hoch polydispersen zufällig dichten Partikelpackungen unter Berücksichtigung der Agglomeration im Feinstkornbereich. Ph.D. thesis, Institute for Applied Stochastics and OR, University of Technology Clausthal, Germany (2015)

    Google Scholar 

  9. Raschdorf, S., Kolonko, M.: A comparison of data structures for the simulation of polydisperse particle packings. Int. J. Numer. Methods Eng. 85(5), 625–639 (2011)

    Article  MathSciNet  Google Scholar 

  10. Schmidt, M., Fehling, E., Geisenhanslüke, C. (eds.): Ultra High Performance Concrete (UHPC) - Proceedings of the International Symposium on UHPC, Schriftenreihe Baustoffe und Massivbau - Structural Materials and Engineering Series, vol. 3. Kassel University Press, Kassel (2004)

    Google Scholar 

  11. Topic, N., Pöschel, T.: Steepest descent ballistic deposition of complex shaped particles. J. Comput. Phys. 308, 421–437 (2016)

    Article  MathSciNet  Google Scholar 

  12. Torquato, S.: Random Heterogenous Materials: Microstructure and Macroscopic Properties, Interdisciplinary Applied Mathematics, 2nd edn., vol. 16. Springer, New York (2006)

    Google Scholar 

  13. Weisstein, E.W.: Sphere-sphere intersection. In: MathWorld. Wolfram Research, Inc. (2007) http://mathworld.wolfram.com/Sphere-SphereIntersection.html

  14. Weller, R., Frese, U., Zachmann, G.: Parallel collision detection in constant time. In: Bender, J., Dequidt, J., Duriez, C., Zachmann, G. (eds.) Workshop on Virtual Reality Interaction and Physical Simulation. The Eurographics Association (2013)

    Google Scholar 

  15. Yu, A.B., Standish, N.: Estimation of the porosity of particle mixtures by a linear-mixture packing model. Ind. Eng. Chem. Res. 30(6), 1372–1385 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

Zhixing Yang is supported by the Dres. Edith und Klaus Dyckerhoff-Stiftung, grant number T218/26441 /2015. Feng Gu receives a scholarship of the Simulation Science Center Clausthal-Göttingen within the project ‘Virtual Microscope’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kolonko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Gu, F., Grosch, T., Kolonko, M. (2018). Accelerated Simulation of Sphere Packings Using Parallel Hardware. In: Baum, M., Brenner, G., Grabowski, J., Hanschke, T., Hartmann, S., Schöbel, A. (eds) Simulation Science. SimScience 2017. Communications in Computer and Information Science, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-319-96271-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96271-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96270-2

  • Online ISBN: 978-3-319-96271-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics