The Systemic Approach: Concepts, Method and Tools

  • Emmanuel Garbolino
  • Jean-Pierre Chéry
  • Franck Guarnieri
Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)


The advent of the systemic approach heralded a turning point in the history of science and its application to the organization, and to production. The approach, which considers phenomena and problems as systems, only really began to distinguish itself from the classical analytical approach in the mid-twentieth century, but its origins are much older. The systemic approach, as it is currently called, can be considered as a general scientific paradigm, such as the Matter of Life or Society. It offers a generic way to construct and present valid, relevant and rational representations of the most diverse, changing situations. The general system theory, which was conceived by von Bertalanffy (General system theory. Foundations, development, applications. Georges Braziller, New York, 1968), encapsulates these ideas and entails a theoretical and practical method: modelling.


  1. Boulding K (1956) General systems theory: the skeleton of science. Manag Sci 2:197–208CrossRefGoogle Scholar
  2. Boumans R, Costanza R, Farley J, Wilson MA, Portela R, Rotmans J, Villa F, Grasso M, (2002) Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecol Econ 41:Special Issue “The Dynamics and Value of Ecosystem Services: Integrating Economic and Ecological Perspectives”, 529–560Google Scholar
  3. Cooke DL, Rohleder TR (2006) Learning from incidents: from normal accidents to high reliability. Syst Dyn Rev 22(3):213–239CrossRefGoogle Scholar
  4. Costanza R, Gottlieb S (1998) Modelling ecological and economic systems with STELLA®: part II. Ecol Model 112(2-3):81–84CrossRefGoogle Scholar
  5. Costanza R, Voinov A, Boumans R, Maxwell T, Villa F, Wainger L, Voinov H (2002) Integrated Ecological Economic Modeling of the Patuxent River Watershed, Maryland. Ecol Monogr 72(2):203–231CrossRefGoogle Scholar
  6. De Rosnay J (1975) Le Macroscope. Vers une vision globale. Seuil, Paris, FranceGoogle Scholar
  7. Descartes R 1637 (2014) Discourse on the method of rightly conducting the reason, and seeking truth in the sciences. Veitch J. (Translator). CreateSpace Independent Publishing Platform, 34 pGoogle Scholar
  8. Donnadieu G, Karsky M (2002) La systémique, penser et agir dans la complexité. Editions Liaisons, Paris, 269 pGoogle Scholar
  9. Durand D (2006) La systémique. Editions PUF, Collection Que sais-je? 127 pGoogle Scholar
  10. Forrester JW (1961). Industrial dynamics. MIT Press, Cambridge, pp 464Google Scholar
  11. Garbolino E, Chery JP, Guarnieri F (2009) Dynamic systems modelling to improve risk analysis in the context of seveso industries. Chem Eng Trans 17:373–378Google Scholar
  12. Jaekook Y, Namsung A, Moosung JA (2004) A quantitative assessment of organizational factors affecting safety using system dynamics model. J Kor Nucl Soc 36(1):64–72Google Scholar
  13. Kyung MK, Moosung J (2005) A quantitative assessment of LCOs for operations using system dynamics. Reliab Eng Syst Saf 87(2):211–222CrossRefGoogle Scholar
  14. Le Moigne J-L (1977) La théorie du système général. Editions PUF, Collection Systèmes-Décisions, 258 pGoogle Scholar
  15. Le Moigne J-L (1983) La théorie du système général. Théorie de la modélisation. Editions PUF, Collection Systèmes-Décisions, deuxième édition, 320 pGoogle Scholar
  16. Le Moigne J-L (1990) La modélisation des systèmes complexes. Editions Dunod, Collection Afcet-Systèmes, 178 pGoogle Scholar
  17. Leveson N (2004a) A new accident model for engineering safer systems. Saf Sci 42(4):237–270CrossRefGoogle Scholar
  18. Leveson NG (2004b) The role of software in spacecraft accidents. J Spacecr Rocket 41(4):564–575CrossRefGoogle Scholar
  19. Leveson N, Dulac N (2005) Safety and risk driven design in complex systems of systems. 1st NASA/AIAA space exploration conference, Orlando, February 2005Google Scholar
  20. Leveson N, Daouk M, Dulac N, Marais K (2003) A systems Theoritic approach to safety engineering , October 30. Massachusetts Institute of Technology, Cambridge, 28 pGoogle Scholar
  21. Meadows DH, Randers J, Meadows DL (2004) Limits to growth: the 30-Year update. 3rd edn, Chelsea Green Publishing, London, 338 pGoogle Scholar
  22. Morin E (2005) Introduction à la pensée complexe. Editions du Seuil, collection Points, 158 pGoogle Scholar
  23. Ouyang Y (2002) Phytoremediation: modeling plant uptake and contaminant transport in the soil–plant–atmosphere continuum. J Hydrol 266:66–82CrossRefGoogle Scholar
  24. Ouyang Y, Huang HC, Huang YD, Lin D, Cui L (2007) Simulating uptake and transport of TNT by plants using STELLA®. Chemosphere 69:1245–1252CrossRefGoogle Scholar
  25. Pascal B, 1670 (2012) The thoughts of blaise pascal. Boer PA (ed), Kegan CP (Translator). CreateSpace Independent Publishing Platform, Scotts Valley, 404 pGoogle Scholar
  26. Paté-Cornell E (1993) Learning from the piper alpha accident: a postmortem analysis of technical and organizational factors. Risk Anal 13(2):215–232CrossRefGoogle Scholar
  27. Patrick GTW, Bywater I (2014) Heraclitus of Ephesus: the fragments of the work of Heraclitus of Ephesus on nature and Heracliti Ephesii Reliquiae. Literary Licensing, LLC, Whitefish, 244 pGoogle Scholar
  28. Perilhon P (2003) MOSAR: Présentation de la méthode. Techniques de l’Ingénieur, SE 4 060, 16 pGoogle Scholar
  29. Pierreval H, Bruniaux R, Caux C (2007) A continuous simulation approach for supply chains in the automotive industry. Simul Model Pract Theory 15:185–198CrossRefGoogle Scholar
  30. Reap JJ (2004) Plants in the garden: an approach to modelling the impact of industrial activities in ecosystems. Thesis presented to the Georgian Institute of Technology, 195 pGoogle Scholar
  31. Santos-Reyes J, Beard AN (2001) A systemic approach to fire safety management. Fire Saf J 36:359–390CrossRefGoogle Scholar
  32. Santos-Reyes J, Beard AN (2008) A systemic approach to managing safety. J Loss Prev Process Ind 21:15–28CrossRefGoogle Scholar
  33. Stringfellow Herring M, Owens BD, Leveson N, Ingham M, Weiss KA (2007) A safety-driven, model-based system engineering methodology, part I. MIT technical report, December 2007, 56 pGoogle Scholar
  34. von Bertalanffy L (1968) General system theory. Foundations, development, applications. Georges Braziller, New YorkGoogle Scholar
  35. Zwirn HP (2006) Les systèmes complexes. Mathématiques et biologie. Editions Odile Jacob, Paris, 219 pGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Emmanuel Garbolino
    • 1
  • Jean-Pierre Chéry
    • 2
  • Franck Guarnieri
    • 1
  1. 1.MINES ParisTech/PSL Research University, CRCSophia Antipolis CedexFrance
  2. 2.AgroParisTechMontpellierFrance

Personalised recommendations