The Global Search Theory Approach to the Bilevel Pricing Problem in Telecommunication Networks

  • Andrei V. OrlovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 247)


In this paper, we develop new methods of local and global search for finding optimistic solutions to the hierarchical problem of optimal pricing in telecommunication networks. These methods are based on the fact that a bilevel optimization problem can be equivalently represented as a nonconvex optimization problem (with the help of the Karush–Kuhn–Tucker conditions and the penalty approach). To solve the resulting nonconvex problem, we apply the Global Search Theory (GST). Computational testing of the developed methods on a test problem demonstrated workability and efficiency of the approach proposed.


Bilevel pricing problem Telecommunication networks KKT-approach Penalty approach Global Search Theory Numerical experiment 



This work has been supported by the Russian Science Foundation (Project no. 15-11-20015).


  1. 1.
    Bard, J.F.: Practical Bilevel Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bazara, M.S., Shetty, C.M.: Nonlinear Programming. Wiley, Theory and Algorithms. New York (1979)Google Scholar
  3. 3.
    Bonnans, J.-F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization: Theoretical and Practical Aspects, 2nd ed. Springer (2006)Google Scholar
  4. 4.
    Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21, 37–44 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brotcorne, L., Labbe, M., Marcotte, P., Savard, G.: A bilevel model and solution algorithm for a Freight Tariff-setting problem. Transp. Sci. 34(3), 289–302 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Brotcorne, L., Labbe, M., Marcotte, P., Savard, G.: A bilevel model for toll optimization on a multicommodity transportation network. Transp. Sci. 35(4), 345–358 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. oper. Res. 153(1), 235–256 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002)zbMATHGoogle Scholar
  9. 9.
    Dempe, S., Kalashnikov, V.V., Perez-Valdes, G.A., Kalashnykova, N.: Bilevel Programming Problems: Theory. Algorithms and Applications to Energy Networks. Springer-Verlag, Berlin-Heidelberg (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Didi-Biha, M., Marcotte, P., Savard, G.: Path-based formulations of a bilevel toll setting problem. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings, pp. 29–50. Springer Science + Business Media, LLC (2006)CrossRefGoogle Scholar
  11. 11.
    Floudas, C.A., Pardalos, P.M. (eds.): Frontiers in Global Optimization. Kluwer Academic Publishers, New York (2004)zbMATHGoogle Scholar
  12. 12.
    Gruzdeva, T.V., Strekalovsky, A.S.: Local search in problems with nonconvex constraints. Comput. Math. Math. Phys. 47(3), 397–413 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gruzdeva, T.V., Petrova, E.G.: Numerical solution of a linear bilevel problem. Comput. Math. Math. Phys. 50(10), 1631–1641 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Horst, R., Tuy, H.: Global Optimization. Deterministic Approaches. Springer-Verlag, Berlin (1993)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kalashnikov, V., Camacho, F., Askin, R., Kalashnykova, N.: Comparison of algorithms for solving a bi-level toll setting problem. Int. J. Innov. Comput. Inf. Control 6(8), 3529–3549 (2010)Google Scholar
  16. 16.
    Labbe, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Manag. Sci. 44(12), Part 1 of 2, 345–358 (1998)Google Scholar
  17. 17.
    Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin, New York (2006)zbMATHGoogle Scholar
  19. 19.
    Orlov, A.V., Strekalovsky, A.S.: Numerical search for equilibria in bimatrix games. Comput. Math. Math. Phys. 45(6), 947–960 (2005)MathSciNetGoogle Scholar
  20. 20.
    Orlov, A.V.: Numerical solution of bilinear programming problems. Comp. Math. Math. Phys. 48(2), 225–241 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Orlov, A.V., Strekalovsky, A.S., Batbileg, S.: On computational search for Nash equilibrium in hexamatrix games. Optim. Lett. 10(2), 369–381 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Orlov, A.V.: A nonconvex optimization approach to quadratic bilevel problems. In: Battiti, R., Kvasov, D., Sergeyev Y. (eds.) 11th International Conference, LION 11, Nizhny Novgorod, Russia, June 19–21, 2017, Revised Selected Papers. LNCS 10556, pp. 222–234 (2017)Google Scholar
  23. 23.
    Pang, J.-S.: Three modelling paradigms in mathematical programming. Math. Prog., Series B. 125(2), 297–323 (2010)Google Scholar
  24. 24.
    Strekalovsky, A.S.: Elements of Nonconvex Optimization. Nauka Publ, Novosibirsk (2003). (In Russian)Google Scholar
  25. 25.
    Strekalovsky, A.S.: On the minimization of the difference of convex functions on a feasible set. Comput. Math. Math. Phys. 43(3), 399–409 (2003)MathSciNetGoogle Scholar
  26. 26.
    Strekalovsky, A.S.: Minimizing sequences in problems with d.c. constraints. Comput. Math. Math. Phys. 45(3), 418–429 (2005)MathSciNetGoogle Scholar
  27. 27.
    Strekalovsky, A.S., Orlov, A.V.: A new approach to nonconvex optimization. Numer. Meth. Programm. (internet-journal: 8, 160–176 (2007)
  28. 28.
    Strekalovsky, A.S., Orlov, A.V.: Bimatrix Games and Bilinear Programming. FizMatLit, Moscow (2007). (in Russian)Google Scholar
  29. 29.
    Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: Local search in a quadratic-linear bilevel programming problem. Numer. Anal. Appl. 3(1), 59–70 (2010)CrossRefGoogle Scholar
  30. 30.
    Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: Numerical solution of a class of bilevel programming problems. Numer. Anal. Appl. 3(2), 165–173 (2010)CrossRefGoogle Scholar
  31. 31.
    Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: On computational search for optimistic solutions in bilevel problems. J. Global Optim. 48, 159–172 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, pp. 465–502. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  33. 33.
    Tsevendorj, I.: Optimality conditions in global optimization: contributions to combinatorial optimization. University of Versailles Saint-Quentin, Habilitation to Supervise Research (2007)Google Scholar
  34. 34.
    Tuy, H.: D.c. Optimization: theory, methods and algorithms. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global optimization, pp. 149–216. Kluwer Academic Publisher (1995)Google Scholar
  35. 35.
    Vallejo, J.F., Sanchez, R.M.: A path based algorithm for solve the hazardous materials transportation bilevel problem. Appl. Mech. Mater. 253–255, 1082–1088 (2013)Google Scholar
  36. 36.
    Vasilyev, F.P.: Optimization Methods. Factorial Press, Moscow (2002). (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control Theory of SB RASIrkutskRussia

Personalised recommendations