Skip to main content

Labs in Building a Modern Physics Way of Thinking

  • Chapter
  • First Online:
The Role of Laboratory Work in Improving Physics Teaching and Learning

Abstract

Teaching modern physics in secondary schools is a challenge, but one that must be met if we are to develop a culture for future generations in which physics is integrated rather than marginalised and which will equip students with analytical skills that can be applied in all areas of their lives, including social dimensions. Conceptual knots in classical physics are often quoted to argue for the exclusion of modern physics in secondary schools, but the physics of the last century is now part of the secondary school curricula in many EU countries and in the last 10 years appears in secondary textbooks, even if the approach is predominantly narrative. A wide discussion on goals, rationale, contents, instruments and methods for its introduction in secondary school curricula is now increasing. In the theoretical framework of the Model of Educational Reconstruction, the Physics Education Research Group of the University of Udine (UPERG) developed research based educational proposals based on an active role of students. Different kinds of Lab work are integrated in the research based proposals. These are chosen to offer an idea of the differentiated perspective of the work of physicists in modern physics and an epistemological reflection. Associated physics education research is focused on contributing to practice, developing vertical coherent content related learning proposals by means of Design Based Research (DBR, Educational Researchers 32(1):5–8, 2003) to produce learning progression (Duschl et al., Studies in Science Education 47(2):123–182, 2011) and finding ways to offer opportunities for understanding what physics is and practical experience, of what it deals with and how it operates. The strategies of Lab work assume a formative role in their integration in the context of the different proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrose B.S., Shaffer P. S., Mcdermott L. C.: An investigation of students understanding of single slit diffraction. American Journal of Physics, 67, 146-155 (1999)

    Article  ADS  Google Scholar 

  • Anderson, T., Shattuck, J.: Design-Based Research: A Decade of Progress in Education Research? Educational Researcher, 41(1), 16–25 (2012). https://doi.org/10.3102/0013189X11428813

    Article  Google Scholar 

  • Atkan B.: Distance Learning Applied to Control Engineering Education”. M.S. thesis, Oregon State University, (1996). https://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/34806/AktanBurcin1996.pdf?sequence=3

  • Aubrecht G.: Redesigning courses for the 21st century. American Journal of Physics, 57, 352-359 (1989).

    Article  ADS  Google Scholar 

  • Banchi H., Bell R. : The Many Levels of Inquiry. Science and Children, 46(2), 26-29 (2008).

    Google Scholar 

  • Bosio S., Capocchiani V., Michelini M., Vogric F., Corni F.: Problem solving activities with hands on experiments for orienting in science, Girep Book on Hands on experiments in physics education, G. Born, H. Harries, H. Litschke, N. Treitz Eds. For ICPE_GIREP_Duisburg University, Duisburg, 1998.

    Google Scholar 

  • Bouquet F., Engstrom V., Greczyło T., Ireson G., Michelini M.: High-tech Kit – The Set of Advanced Activities from the Mosem Project, MPTL14 Proceedings (2009), CD-ROM and http://www.fisica.uniud.it/URDF/mptl14/contents.htm

  • Buongiorno D.: Optical spectroscopy for biotechnology students, Il nuovo Cimento, 40, 4 (2017).

    Google Scholar 

  • Burra G.S., Michelini M., Santi L., (eds.): Frontiers of Fundamental Physics and Physics Education Research, Book of selected papers presented in the International Symposium FFP12, Springer, London (2014) [978-3-319-00296-5].

    Google Scholar 

  • Calore G., Loria A., Mazzega E., Michelini M., Sconza A., Torzo G. : An Undergraduate Laboratory Mossbauer Apparatus. European. Journal of Physics 11 343-351 (1990)

    Article  ADS  Google Scholar 

  • Corni F., Mazzega E., Michelini M., Ottaviani G.: Understand time resolved reflectivity by simple experiments. In: GIREP Book Light and Information, L.C. Pereira, J.A. Ferreira, H.A. Lopes (eds.), Univ. do Minho, Braga (1993)

    Google Scholar 

  • Corni F., Michelini M.: Rutherford Backscattering Spectrometry: theoretic, experimental, simulation and application. European Journal of Physics, 39, 1 (2018)

    Article  Google Scholar 

  • Corni F., Michelini M., Santi L., Soramel F., Stefanel A.: The concept of the cross section. In Teaching the Science of Condensed Matter and New Materials, GIREP-ICPE Book, Forum 1996, 193 (1996)

    Google Scholar 

  • DBR - Design-Based-Research Collective: Design-based research: An emerging paradigm for educational inquiry. Educational Researchers, 32(1), 5-8 (2003)

    Article  Google Scholar 

  • De Jong T., Sotiriou S., Gillet D.: Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments, 1(1), 1-16, (2014). http://www.slejournal.com/content/pdf/s40561-014-0003-6.pdf

    Article  Google Scholar 

  • Di Sessa A.: Contextuality and conceptual change. In Proceedings of the Enrico Fermi Summer School, Course CLVI, E. Redish, M. Vicentini (eds.) Italian Physical Society, Bologna (2004), 137-15 (2004)

    Google Scholar 

  • Duit R., Gropengießer H., Kattmann U.: Toward science education research that is relevant for improving practice: The model of educational reconstruction. In: H.E. Fisher (ed.): Developing Standard in RSE, pp. 1- 9. Taylor and Francis, London, UK (2005)

    Google Scholar 

  • Duschl R., Maeng S., Sezen A.: Learning progressions and teaching sequences: a review and analysis, Studies in Science Education, 47(2), 123-182 (2011)

    Article  ADS  Google Scholar 

  • Etkina E.: Millikan award lecture: Students of physics—Listeners, observers, or collaborative participants in physics scientific practices? American Journal of Physics, 83 (8), 669-679 (2015) https://doi.org/10.1119/1.4923432

    Article  ADS  Google Scholar 

  • Etkina E., Planinsic G.: Thinking like a scientist, Physics World, March, 48-51 (2014)

    Google Scholar 

  • Fera G., Michelini M., Vercellati S.: Reasoning and models of talented students on electrical transport in solids. In: Tasar F. (ed.) Proceedings of The World Conference on Physics Education 2012. Pegem Akademiel, (2014) [ISBN 978-605-364-658-7], 155-162.

    Google Scholar 

  • Fischer H. (2006). Video based analysis of surface- and deep structure of science lessons - power and limits, Esera Summer School 2006.

    Google Scholar 

  • Fischer H.E., Klemm K.: Framework for Empirical Research on Science Teaching and Learning, Journal of Science Teacher Education,16, 309–349 (2005)

    Article  ADS  Google Scholar 

  • Gervasio M., Michelini M.: Lucegrafo. A Simple USB Data Acquisition System for Diffraction Experiments. In: B. Lamboune, L. Mathelitsch, M. Michelini (eds.) MPTL14 Proceedings, (2009a). CD-ROM and http://www.fisica.uniud.it/URDF/mptl14/contents.htm

  • Gervasio M., Michelini M.: A USB Probe for Resistivity versus Temperature and Hall Coefficient measurements. In: B. Lamboune, L. Mathelitsch, M. Michelini (eds.) MPTL14 Proceedings, (2009b). CD-ROM and http://www.fisica.uniud.it/URDF/mptl14/contents.htm

  • Ghirardi G.C., Grassi R., Michelini M.: A Fundamental Concept in Quantum Theory: The Superposition Principle, in Thinking Physics for Teaching. Aster, Plenum Publishing Corporation, p. 329 (1996)

    Google Scholar 

  • Gil D.P., Solbes J.: The introduction of modern physics. International Journal of Science Education, 15, 255-260 (1993)

    Article  ADS  Google Scholar 

  • Giugliarelli G., Michelini M., Mazzega E., Ottaviani G.P.,: Mott transition as a way to discuss electrical transport properties, in Teaching the Science of Condensed Matter and New Materials. In: GIREP-ICPE Book, Forum 1996, 317 (1996)

    Google Scholar 

  • Greca I.M., Moreira M.A., Mental models, conceptual models, and modelling. International Journal of Science Education 22 1-11 (2000)

    Article  ADS  Google Scholar 

  • Hake R.R.: Is it Finally Time to Implement Curriculums? AAPT Announcer 30(4), 103 (2000)

    Google Scholar 

  • Heron P.R.L., McDermott L.C.: Bridging the gap between teaching and learning in geometrical optics: The role of research. Opt. Photonics News https://doi.org/OPPHEL9, 30–36 (1998)

  • Hirata K.: How can we use microcomputers effectively in teaching and learning physics? Communicating Physics, ICPE (IUPAP), 132 (1998)

    Google Scholar 

  • ICPE-GIREP book: The role of the Laboratory in Physics Teaching, Oxford University press. UK, Oxford (1978)

    Google Scholar 

  • Ivanjek L., Shaffer P.L., McDermott L.C., Planinic M., Veza D.: American Journal of Physics, 83(1), 85-90 (2015)

    Article  ADS  Google Scholar 

  • Lijnse P. L.: Developmental research as a way to an empirically based “didactical structure of science”, Science Education, 79, 189-199 (1995)

    Article  ADS  Google Scholar 

  • Lumbelli L.,: Gestalt theory and C. Rogers’ definition of subject-centered interview, 10th Scientific Convention of the Society for Gestalt Theory and its Applications (GTA), Vienna/Austria (1997)

    Google Scholar 

  • Matarrita A.C., Concari S.B.: Remote laboratories used in physics teaching: a state, (2016)

    Google Scholar 

  • McComas W.F., Clough, M.P., Almazroa H.: The Role and Character of the Nature of Science in Science Education, in The Nature of Science in Science Education: Rationales and Strategies, edited by McComas W.F. (Springer Netherlands, Dordrecht) 2002, 3-39 (2002)

    Google Scholar 

  • McDermott L.C.: Millikan Lecture 1990: What we teach and what is learned — Closing the gap, American Journal of Physics. 59, 301-315 (1991)

    Article  ADS  Google Scholar 

  • McDermott L.C.: Physics Education Research: the key to improving student learning from the introductory to the graduate level. In: Rajka Jurdana-Sepic et al. (eds.) Frontiers of Physics Education, selected papers in Girep-Epec book, Zlatni, Rijeka (CRO), (2008) [ISBN 978-953-55066-1-4].

    Google Scholar 

  • McLean Phillips A., Watkins J., Hammer D.: Problematizing as a scientific endeavor, Phys. Rev. Phys. Educ. Res. 13, (2017)

    Google Scholar 

  • Meheut M., Psillos D.: Teaching–learning sequences, International Journal of Science Education, 26 (5) 515-535 (2004)

    Article  ADS  Google Scholar 

  • Michelini M. Building bridges between common sense ideas and a physics description of phenomena. In Menabue L., Santoro G. (eds.) New Trends in Science and Technology Education, 257-274. Bologna: CLUEB (2010)

    Google Scholar 

  • Michelini M., Stefanel A., Santi L.: Teacher training strategies on physical optics: experimenting the proposal on diffraction. In: Michelini M. (ed.) Quality Development in the Teacher Education and Training, selected papers in Girep books, pp. 568–576. Forum, Udine (2004) [ISBN: 88-8420-225-6].

    Google Scholar 

  • Michelini M., Santi L.: Producing and interpreting thermal waves in a didactic laboratory. In: Michelini M., Pugliese Jona S. (eds.), Physics Teaching and Learning, selected papers in Girep Book, dedicated to the memory of professor Arturo Loria, Forum, Udine, Italy (2005) [ISBN: 88-8420-280-9], 181–188.

    Google Scholar 

  • Michelini M., Santi L.: Master IDIFO for in-service teacher training in modern physics. In: Sidharth B.G., Honsell F., Mansutti O., Sreenivasan K., De Angelis A. (eds.) Frontiers of Fundamental and Computational Physics – FFP9, selected papers, pp. 253–254. American Institut of Physics – AIP 1018, Melville-New York (2008) [ISBN 978-0-7354-0539-4].

    Google Scholar 

  • Michelini M., Stefanel A.: Upper secondary students face optical diffraction using simple experiments and on-line measurements. In: FFP14, a cura di R. Triay, in stampa (2015)

    Google Scholar 

  • Michelini M., Vercellati S.: Pupils explore magnetic and electromagnetic phenomena in CLOE labs, In Latin-American Journal of Physics Education, 6(1), 10-15 (2012)

    Google Scholar 

  • Michelini M., Pugliese E., Santi L.: Mass from Classical Physics to Special Relativity: Learning Results. In: Tasar F. (ed.), Proceedings of The World Conference on Physics Education 2012, Pegem Akademiel (2014a) [ISBN 978-605-364-658-7], 141-154.

    Google Scholar 

  • Michelini M., Santi L., Stefanel A.: Basic concept of superconductivity: a path for high school. In: Burra G.S., Michelini M., Santi L. (eds.) Frontiers of Fundamental Physics and Physics Education Research, Book of selected papers FFP12, pp. 453-460. Springer, Cham, Heidelberg, NY, Dordrecht, London (2014b) [978-3-319-00296-5].

    Google Scholar 

  • Michelini M., Santi L., Stefanel A.: Upper secondary students face optical diffraction using simple experiments and on-line measurements. In: Kajfasz E., Masson T., Triay R. (eds) Proceedings FFP14, Marseille 2014, July 2014, Aix Marseille University (AMU) Saint-Charles Campus, Marseille, France (2014c), 15–18. http://pos.sissa.it/archive/conferences/224/240/FFP14_240.pdf

  • Michelini M., Santi L., Stefanel A.: Research based proposals to build modern physics way of thinking in secondary students. In: Kiraly A., Tell T. (eds.) Teaching Physics Innovatively, ELTE, University of Budapest, Budapest (2016). [ISBN 978-963-284-815-0].

    Google Scholar 

  • Michelini, M., Santi, L., Stefanel, A.: Worksheets for pupils involvement in learning quantum mechanics. In R. Jurdana-Sepic, et al. (eds.), Frontiers of Physics Education, pp. 102-111. Zlatni, Rijeka (2008).

    Google Scholar 

  • Niedderer H., Budde M., Givry D., Psillos D., Tiberghien A: Learning Process Studies. Roser Pinto; Digna Couso. Contributions from science education research, pp. 159-171. Springer (2007) [978-1-4020-5031-2].

    Google Scholar 

  • Ostermann F., Moreira M.A.: Física Contemporânea em la escuela secundaria. Revista de Enseñanza de las Ciencias, 3(2), 391-404 (2000)

    Google Scholar 

  • Planinšič G., Etkina E.: Light Emitting Diodes: A hidden treasure, The Physics Teacher, 52 (2), 94-99 (2014)

    Article  ADS  Google Scholar 

  • Rabe T., Mikelskis-Seifert H.F.: Diffraction of Light in a Model-Sensitive Approach in Physics Instruction. In: Proceedings GIREP conference 2006: Modelling in Physics and Physics Education, (2006)

    Google Scholar 

  • Santi L., Mazzega E., Michelini M.: Understand Interference by means of computer model, in Light and Information, L. C. Pereira, Braga: Univ. do Minho, 372-380 (1993)

    Google Scholar 

  • Sconza A., Torzo G., Delfitto G., Michelini M.: Electrical conduction in metals: a didactical experimental study, in Teaching the Science of Condensed Matter and New Materials, GIREP-ICPE Book, Forum 1996, 122 (1996)

    Google Scholar 

  • Silva R.S.: Modern physics for school students, GJSFR-E, vol. 15, 1, Global Journals Inc. (USA) – Online (2015). ISSN: 2249-4626& Print ISSN: 0975-5896.

    Google Scholar 

  • Stefanel A., Michelini M., Santi L.: High school students analyzing the phenomenology of superconductivity and constructing model of the Meissner effect. In: Tasar (ed.), Proceedings of The World Conference on Physics Education 2012, Pegem Akademiel (2014). [ISBN 978-605-364-658-7], 1253-1266.

    Google Scholar 

  • Tesch M., Euler M., Duit R.: Towards improving the quality of physics instruction. In M. Michelini (Ed.), Quality development in teacher educ. and training. Udine: Forum, 302-306 (2004)

    Google Scholar 

  • Van den Berg E., Ellermeijer T., Slooten O. (eds.): Selected papers in GIREP publication, pp. 928-934, University of Amsterdam Amsterdam, (2006). [978-90-5776-177-5] www.girep2006.ni

  • Vercellati S.: Construction of the concept of field seen as a process starting from an historical based rational reconstruction. In: L. Menabue, G. Santoro (eds.) New Trends in Science and Technology Education. Selected papers, vol. 1, pp. 336-339. CLUEB, Bologna, (2010) [ISBN 978-88-491-3392-9]

    Google Scholar 

  • Viennot L.: Thinking in Physics-The pleasure of reasoning and understanding, Springer Ed. (2014)

    Google Scholar 

  • Vosniadou S (ed.): International Handbook of Research on Conceptual Change, II edition. Routledge, London (2013), ISBN-13: 978-0415898836 ISBN-10: 0415898838.

    Google Scholar 

  • Wagner G.: Putting more ‘modern’ in modern physics education: a Knowledge Building approach using student questions and ideas about the universe, Physics Education, IOP: London (2017)

    Google Scholar 

  • Watts M.: The science of problem solving: A practical guide for science teachers, Cassell, UK (1991)

    Google Scholar 

  • Zollman D.A., Rebello N.S., Hogg K.: Quantum mechanics for everyone: Hands-on activities integrated with technology, American Journal of Physics, 70, 252-259 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Michelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michelini, M. (2018). Labs in Building a Modern Physics Way of Thinking. In: Sokołowska, D., Michelini, M. (eds) The Role of Laboratory Work in Improving Physics Teaching and Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-96184-2_2

Download citation

Publish with us

Policies and ethics