The Deep Subseafloor and Biosignatures

  • Frédéric GaboyerEmail author
  • Gaëtan Burgaud
  • Virginia Edgcomb
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


A critical issue in astrobiology is “where to look for present or past life?” and which types of environments could be relevant, i.e. environments associated with high probabilities to (have) support(ed) life and preserve(d) biosignatures. Due both to the large reservoir it represents and to its protective effect against harmful surface conditions, for example radiation, oxidation, the subsurface is of considerable interest in astrobiology. On Earth, living microorganisms have been documented buried in the subsurface up to depths of several kilometers, demonstrating that the deep subsurface can be inhabited by complex microbial communities for millions of years and offering astrobiologists the possibility to better understand how life could be supported, and what kind of biosignatures could be expected, in the subsurface of other planetary bodies. In this chapter we present general trends in the microbial ecology of deep subsurface environments and their peculiar conditions, with a focus on sedimentary microbial ecosystems. We provide a case study of the Canterbury Basin subseafloor as an analogue, subsurface ecosystem on extraterrestrial planetary bodies, and discuss analytical methods for studying microbial lifestyles and preservation in that ecosystem.


  1. Batzke A, Engelen B, Sass H et al (2007) Phylogenetic and physiological diversity of cultured deep-biosphere Bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol J 24:261–273CrossRefGoogle Scholar
  2. Biddle J, House CH, Brenchley JE (2005) Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology 3(4):287–295CrossRefGoogle Scholar
  3. Biddle J, Lipp J, Lever M, Lloyd K, Sørensen K, Anderson R, Fredricks H, Elvert M, Kelly T, Schrag P (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103(10):3846–3851ADSCrossRefGoogle Scholar
  4. Birrien J-L, Zeng X, Jebbar M et al (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2881CrossRefGoogle Scholar
  5. Blöchl E, Rachel R, Burggraf S et al (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 C. Extremophiles 1:14–21CrossRefGoogle Scholar
  6. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology 6(3):245–252CrossRefGoogle Scholar
  7. Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485CrossRefGoogle Scholar
  8. Chivian D, Brodie EL, Alm EJ et al (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278ADSCrossRefGoogle Scholar
  9. Ciobanu M-C, Burgaud G, Dufresne A et al (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J 8:1370–1380CrossRefGoogle Scholar
  10. Cowen JP, Copson DA, Jolly J et al (2012) Advanced instrument system for real-time and time-series microbial geochemical sampling of the deep (basaltic) crustal biosphere. Deep-Sea Res I Oceanogr Res Pap 61:43–56ADSCrossRefGoogle Scholar
  11. D’Hondt S, Rutherford S, Spivack A (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070ADSCrossRefGoogle Scholar
  12. D’Hondt S et al (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221ADSCrossRefGoogle Scholar
  13. D’Hondt S, Spivack AJ, Pockalny R et al (2009) Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106:11651–11656ADSCrossRefGoogle Scholar
  14. DeLong E (2004) Microbial life breathes deep. Science 306:2198–2200CrossRefGoogle Scholar
  15. Deming J, Somers L, Straube W et al (1988) Isolation of an obligated barophilic bacterium and description of a new genus Colwellia Gen-nov. Syst Appl Microbiol 10:152–160CrossRefGoogle Scholar
  16. Durbin AM, Teske A (2011) Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ Microbiol 13:3219–3234CrossRefGoogle Scholar
  17. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356ADSCrossRefGoogle Scholar
  18. Edgcomb VP, Molyneaux SJ, Böer S et al (2007) Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes. Extremophiles 11:329–342CrossRefGoogle Scholar
  19. Edgcomb VP, Beaudoin D, Gast R et al (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183CrossRefGoogle Scholar
  20. Engelhardt T, Sahlberg M, Cypionka H et al (2011) Induction of prophages from deep-subseafloor bacteria: phages in the deep-subseafloor. Environ Microbiol Rep 3:459–465CrossRefGoogle Scholar
  21. Engelhardt T, Sahlberg M, Cypionka H et al (2012) Biogeography of Rhizobium radiobacter and distribution of associated temperate phages in deep subseafloor sediments. ISME J 8:1503–1509CrossRefGoogle Scholar
  22. Engelhardt T, Kallmeyer J, Cypionka H et al (2014) High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J 8(7):1503–1509CrossRefGoogle Scholar
  23. Foucher F, Westall F, Brandstätter F et al (2010) Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630ADSCrossRefGoogle Scholar
  24. Foucher F, Ammar M-R, Westall F (2015) Revealing the biotic origin of silicified Precambrian carbonaceous microstructures using Raman spectroscopic mapping, a potential method for the detection of microfossils on Mars. J Raman Spectrosc 46:873–879ADSCrossRefGoogle Scholar
  25. Friese A, Kallmeyer J, Kitte JA, et al the ICDP Lake Chalco Drilling Science Team and the ICDP Towuti Drilling Science Team (2017) A simple and inexpensive technique for assessing contamination during drilling operations: a simple and inexpensive technique. Limnol Oceanogr Methods 15:200–211CrossRefGoogle Scholar
  26. Fulthorpe C S, Hoyanagi K, Blum P et al (2011) Expedition 317 report. Proceedings of the IODP 317. Integrated Ocean Drilling Program, 2011.
  27. Gaboyer F, Burgaud G, Alain K (2015) Physiological and evolutionary potential of microorganisms from the Canterbury Basin subseafloor, a metagenomic approach. FEMS Microbiol Ecol 91:1–13CrossRefGoogle Scholar
  28. Harrison JP, Gheeraert N, Tsigelnitskiy D et al (2013) The limits for life under multiple extremes. Trends Microbiol 21:204–212CrossRefGoogle Scholar
  29. Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94CrossRefGoogle Scholar
  30. Inagaki F, Takai K, Hirayama H et al (2003) Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7:307–317CrossRefGoogle Scholar
  31. Inagaki F, Hinrichs K-U, Kubo Y et al (2015) Exploring deep microbial life in coal-bearing sediment down to 2.5 km below the ocean floor. Science 349:420–424ADSCrossRefGoogle Scholar
  32. Jones W, Leigh J, Mayer F et al (1983) Methanococcus jannaschii sp-nov, an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  33. Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781CrossRefGoogle Scholar
  34. Jørgensen BB, Marshall PG (2016) Slow microbial life in the seabed. Annu Rev Mar Sci 8:311–332ADSCrossRefGoogle Scholar
  35. Kallmeyer J, Smith DC, Spivack AJ et al (2008) New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr Methods 6:236–245CrossRefGoogle Scholar
  36. Kallmeyer J, Pockalny R, Adhikari RR et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109:16213–16216ADSCrossRefGoogle Scholar
  37. Lever MA, Alperin MJ, Engelen B et al (2006) Trends in basalt and sediment core contamination during IODP Expedition 301. Geomicrobiol J 23(7):517–530CrossRefGoogle Scholar
  38. Lipp JS, Morono Y, Inagaki F et al (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994ADSCrossRefGoogle Scholar
  39. Liu C-H, Huang X, Xie T-N et al (2016) Exploration of cultivable fungal communities in deep coal-bearing sediments from 1.3 to 2.5 km below the ocean floor. Environ Microbiol 2:803–818Google Scholar
  40. Lloyd KG, Edgcomb VP, Molyneaux SJ et al (2005) Effects of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic archaea. Appl Environ Microbiol 71:6383–6387CrossRefGoogle Scholar
  41. Lloyd KG, Schreiber L, Petersen DG et al (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–218ADSCrossRefGoogle Scholar
  42. Lomstein BA, Langerhuus AT, D’Hondt S et al (2012) Endospore abundance, microbial growth and necromass turnover in deep subseafloor sediment. Nature 484:101–104ADSCrossRefGoogle Scholar
  43. Morono Y, Terada T, Masui N et al (2009) Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J 3:503–511CrossRefGoogle Scholar
  44. Morono Y, Terada T, Nishizawa M et al (2011) Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci USA 108:18295–11830ADSCrossRefGoogle Scholar
  45. Navarri M, Jégou C, Meslet-Cladière L et al (2016) Deep subseafloor fungi as an untapped reservoir of amphipathic antimicrobial compounds. Mar Drugs 14(3):50CrossRefGoogle Scholar
  46. Nunoura T, Soffientino B, Blazejak A et al (2009) Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308). FEMS Microbiol Ecol 69:410–424CrossRefGoogle Scholar
  47. Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161:799–809CrossRefGoogle Scholar
  48. Orcutt BN, Bach W, Becker K et al (2010) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703CrossRefGoogle Scholar
  49. Orcutt BN, Sylvan JB, Knab NJ et al (2011) Microbial ecology of the Dark Ocean above, at, and below the Seafloor. Microbiol Mol Biol Rev 75:361–422CrossRefGoogle Scholar
  50. Orsi WD, Biddle JF, Edgcomb V (2013a) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335ADSCrossRefGoogle Scholar
  51. Orsi WD, Edgcomb VP, Christman GD et al (2013b) Gene expression in the deep biosphere. Nature 499:205–208ADSCrossRefGoogle Scholar
  52. Pachiadaki MG, Rédou V, Beaudoin DJ et al (2016) Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front Microbiol 7:846CrossRefGoogle Scholar
  53. Parkes R, Cragg B, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28ADSCrossRefGoogle Scholar
  54. Parkes RJ, Cragg B, Roussel E et al (2014) A review of prokaryotic populations and processes in subseafloor sediments, including biosphere: geosphere interactions. Mar Geol 352:409–425ADSCrossRefGoogle Scholar
  55. Piepenbrink KH, Sundberg EJ (2016) Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem Soc Trans 44(6):1659–1666CrossRefGoogle Scholar
  56. Ravikumar S, Williams GP, Shanthy S et al (2007) Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove. J Environ Biol 28:109–114Google Scholar
  57. Rédou V, Ciobanu MC, Pachiadaki MG et al (2014) In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiol Ecol 90:908–921CrossRefGoogle Scholar
  58. Rédou V, Navarri M, Meslet-Cladière L et al (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583CrossRefGoogle Scholar
  59. Reyes C, Lloyd JR, Saltikov CW (2008) Geomicrobiology of iron and arsenic in anoxic sediments. In: Ahuja S (ed) Arsenic contamination of groundwater. Wiley, Hoboken, pp 123–146CrossRefGoogle Scholar
  60. Schrenk M, Huber JA, Edwards KJ (2010) Microbial provinces in the subseafloor. Ann Rev Mar Sci 2:279–304CrossRefGoogle Scholar
  61. Schulte M, Blake D, Hoehler T et al (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6:364–376ADSCrossRefGoogle Scholar
  62. Schouten S, Hopmans EC, Damsté JSS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Organic geochemistry 54:19–61CrossRefGoogle Scholar
  63. Smith DC, Spivack A, Fisk MR et al (2000) Methods for quantifying potential microbial contamination during deep ocean coring. ODP Technical Note 28Google Scholar
  64. Starnawski P, Bataillon T, Ettema TJG et al (2017) Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA 114(11):2940–2945CrossRefGoogle Scholar
  65. Stevenson A, Cray J, Williams J et al (2015) Is there a common water-activity limit for the three domains of life? ISME J 9:1333–1351CrossRefGoogle Scholar
  66. Sturt HF, Summons RE, Smith K et al (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628ADSCrossRefGoogle Scholar
  67. Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954ADSCrossRefGoogle Scholar
  68. Teske A, Sørensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18CrossRefGoogle Scholar
  69. Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  70. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407(6806):897–900ADSCrossRefGoogle Scholar
  71. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583ADSCrossRefGoogle Scholar
  72. Zhu R, Versteegh GJM, Hinrichs K-U (2016) Detection of microbial biomass in subseafloor sediment by pyrolysis–GC/MS. J Anal Appl Pyrolysis 118:175–180CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frédéric Gaboyer
    • 1
    Email author
  • Gaëtan Burgaud
    • 2
  • Virginia Edgcomb
    • 3
  1. 1.Centre de Biophysique Moléculaire, CNRSOrléansFrance
  2. 2.Université de Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), ESIABPlouzanéFrance
  3. 3.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations