Skip to main content

The Deep Subseafloor and Biosignatures

  • Chapter
  • First Online:

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

Abstract

A critical issue in astrobiology is “where to look for present or past life?” and which types of environments could be relevant, i.e. environments associated with high probabilities to (have) support(ed) life and preserve(d) biosignatures. Due both to the large reservoir it represents and to its protective effect against harmful surface conditions, for example radiation, oxidation, the subsurface is of considerable interest in astrobiology. On Earth, living microorganisms have been documented buried in the subsurface up to depths of several kilometers, demonstrating that the deep subsurface can be inhabited by complex microbial communities for millions of years and offering astrobiologists the possibility to better understand how life could be supported, and what kind of biosignatures could be expected, in the subsurface of other planetary bodies. In this chapter we present general trends in the microbial ecology of deep subsurface environments and their peculiar conditions, with a focus on sedimentary microbial ecosystems. We provide a case study of the Canterbury Basin subseafloor as an analogue, subsurface ecosystem on extraterrestrial planetary bodies, and discuss analytical methods for studying microbial lifestyles and preservation in that ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Batzke A, Engelen B, Sass H et al (2007) Phylogenetic and physiological diversity of cultured deep-biosphere Bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol J 24:261–273

    Article  Google Scholar 

  • Biddle J, House CH, Brenchley JE (2005) Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology 3(4):287–295

    Article  Google Scholar 

  • Biddle J, Lipp J, Lever M, Lloyd K, Sørensen K, Anderson R, Fredricks H, Elvert M, Kelly T, Schrag P (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103(10):3846–3851

    Article  ADS  Google Scholar 

  • Birrien J-L, Zeng X, Jebbar M et al (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2881

    Article  Google Scholar 

  • Blöchl E, Rachel R, Burggraf S et al (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 C. Extremophiles 1:14–21

    Article  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology 6(3):245–252

    Article  Google Scholar 

  • Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485

    Article  Google Scholar 

  • Chivian D, Brodie EL, Alm EJ et al (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278

    Article  ADS  Google Scholar 

  • Ciobanu M-C, Burgaud G, Dufresne A et al (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J 8:1370–1380

    Article  Google Scholar 

  • Cowen JP, Copson DA, Jolly J et al (2012) Advanced instrument system for real-time and time-series microbial geochemical sampling of the deep (basaltic) crustal biosphere. Deep-Sea Res I Oceanogr Res Pap 61:43–56

    Article  ADS  Google Scholar 

  • D’Hondt S, Rutherford S, Spivack A (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070

    Article  ADS  Google Scholar 

  • D’Hondt S et al (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Article  ADS  Google Scholar 

  • D’Hondt S, Spivack AJ, Pockalny R et al (2009) Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106:11651–11656

    Article  ADS  Google Scholar 

  • DeLong E (2004) Microbial life breathes deep. Science 306:2198–2200

    Article  Google Scholar 

  • Deming J, Somers L, Straube W et al (1988) Isolation of an obligated barophilic bacterium and description of a new genus Colwellia Gen-nov. Syst Appl Microbiol 10:152–160

    Article  Google Scholar 

  • Durbin AM, Teske A (2011) Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ Microbiol 13:3219–3234

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  ADS  Google Scholar 

  • Edgcomb VP, Molyneaux SJ, Böer S et al (2007) Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes. Extremophiles 11:329–342

    Article  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R et al (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  Google Scholar 

  • Engelhardt T, Sahlberg M, Cypionka H et al (2011) Induction of prophages from deep-subseafloor bacteria: phages in the deep-subseafloor. Environ Microbiol Rep 3:459–465

    Article  Google Scholar 

  • Engelhardt T, Sahlberg M, Cypionka H et al (2012) Biogeography of Rhizobium radiobacter and distribution of associated temperate phages in deep subseafloor sediments. ISME J 8:1503–1509

    Article  Google Scholar 

  • Engelhardt T, Kallmeyer J, Cypionka H et al (2014) High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J 8(7):1503–1509

    Article  Google Scholar 

  • Foucher F, Westall F, Brandstätter F et al (2010) Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630

    Article  ADS  Google Scholar 

  • Foucher F, Ammar M-R, Westall F (2015) Revealing the biotic origin of silicified Precambrian carbonaceous microstructures using Raman spectroscopic mapping, a potential method for the detection of microfossils on Mars. J Raman Spectrosc 46:873–879

    Article  ADS  Google Scholar 

  • Friese A, Kallmeyer J, Kitte JA, et al the ICDP Lake Chalco Drilling Science Team and the ICDP Towuti Drilling Science Team (2017) A simple and inexpensive technique for assessing contamination during drilling operations: a simple and inexpensive technique. Limnol Oceanogr Methods 15:200–211

    Article  Google Scholar 

  • Fulthorpe C S, Hoyanagi K, Blum P et al (2011) Expedition 317 report. Proceedings of the IODP 317. Integrated Ocean Drilling Program, 2011. http://publications.iodp.org/proceedings/317/317title.htm

  • Gaboyer F, Burgaud G, Alain K (2015) Physiological and evolutionary potential of microorganisms from the Canterbury Basin subseafloor, a metagenomic approach. FEMS Microbiol Ecol 91:1–13

    Article  Google Scholar 

  • Harrison JP, Gheeraert N, Tsigelnitskiy D et al (2013) The limits for life under multiple extremes. Trends Microbiol 21:204–212

    Article  Google Scholar 

  • Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94

    Article  Google Scholar 

  • Inagaki F, Takai K, Hirayama H et al (2003) Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7:307–317

    Article  Google Scholar 

  • Inagaki F, Hinrichs K-U, Kubo Y et al (2015) Exploring deep microbial life in coal-bearing sediment down to 2.5 km below the ocean floor. Science 349:420–424

    Article  ADS  Google Scholar 

  • Jones W, Leigh J, Mayer F et al (1983) Methanococcus jannaschii sp-nov, an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  Google Scholar 

  • Jørgensen BB, Marshall PG (2016) Slow microbial life in the seabed. Annu Rev Mar Sci 8:311–332

    Article  ADS  Google Scholar 

  • Kallmeyer J, Smith DC, Spivack AJ et al (2008) New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr Methods 6:236–245

    Article  Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109:16213–16216

    Article  ADS  Google Scholar 

  • Lever MA, Alperin MJ, Engelen B et al (2006) Trends in basalt and sediment core contamination during IODP Expedition 301. Geomicrobiol J 23(7):517–530

    Article  Google Scholar 

  • Lipp JS, Morono Y, Inagaki F et al (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  ADS  Google Scholar 

  • Liu C-H, Huang X, Xie T-N et al (2016) Exploration of cultivable fungal communities in deep coal-bearing sediments from 1.3 to 2.5 km below the ocean floor. Environ Microbiol 2:803–818

    Google Scholar 

  • Lloyd KG, Edgcomb VP, Molyneaux SJ et al (2005) Effects of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic archaea. Appl Environ Microbiol 71:6383–6387

    Article  Google Scholar 

  • Lloyd KG, Schreiber L, Petersen DG et al (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–218

    Article  ADS  Google Scholar 

  • Lomstein BA, Langerhuus AT, D’Hondt S et al (2012) Endospore abundance, microbial growth and necromass turnover in deep subseafloor sediment. Nature 484:101–104

    Article  ADS  Google Scholar 

  • Morono Y, Terada T, Masui N et al (2009) Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J 3:503–511

    Article  Google Scholar 

  • Morono Y, Terada T, Nishizawa M et al (2011) Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci USA 108:18295–11830

    Article  ADS  Google Scholar 

  • Navarri M, Jégou C, Meslet-Cladière L et al (2016) Deep subseafloor fungi as an untapped reservoir of amphipathic antimicrobial compounds. Mar Drugs 14(3):50

    Article  Google Scholar 

  • Nunoura T, Soffientino B, Blazejak A et al (2009) Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308). FEMS Microbiol Ecol 69:410–424

    Article  Google Scholar 

  • Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161:799–809

    Article  Google Scholar 

  • Orcutt BN, Bach W, Becker K et al (2010) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703

    Article  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ et al (2011) Microbial ecology of the Dark Ocean above, at, and below the Seafloor. Microbiol Mol Biol Rev 75:361–422

    Article  Google Scholar 

  • Orsi WD, Biddle JF, Edgcomb V (2013a) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335

    Article  ADS  Google Scholar 

  • Orsi WD, Edgcomb VP, Christman GD et al (2013b) Gene expression in the deep biosphere. Nature 499:205–208

    Article  ADS  Google Scholar 

  • Pachiadaki MG, Rédou V, Beaudoin DJ et al (2016) Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front Microbiol 7:846

    Article  Google Scholar 

  • Parkes R, Cragg B, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28

    Article  ADS  Google Scholar 

  • Parkes RJ, Cragg B, Roussel E et al (2014) A review of prokaryotic populations and processes in subseafloor sediments, including biosphere: geosphere interactions. Mar Geol 352:409–425

    Article  ADS  Google Scholar 

  • Piepenbrink KH, Sundberg EJ (2016) Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem Soc Trans 44(6):1659–1666

    Article  Google Scholar 

  • Ravikumar S, Williams GP, Shanthy S et al (2007) Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove. J Environ Biol 28:109–114

    Google Scholar 

  • Rédou V, Ciobanu MC, Pachiadaki MG et al (2014) In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiol Ecol 90:908–921

    Article  Google Scholar 

  • Rédou V, Navarri M, Meslet-Cladière L et al (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  Google Scholar 

  • Reyes C, Lloyd JR, Saltikov CW (2008) Geomicrobiology of iron and arsenic in anoxic sediments. In: Ahuja S (ed) Arsenic contamination of groundwater. Wiley, Hoboken, pp 123–146

    Chapter  Google Scholar 

  • Schrenk M, Huber JA, Edwards KJ (2010) Microbial provinces in the subseafloor. Ann Rev Mar Sci 2:279–304

    Article  Google Scholar 

  • Schulte M, Blake D, Hoehler T et al (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6:364–376

    Article  ADS  Google Scholar 

  • Schouten S, Hopmans EC, Damsté JSS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Organic geochemistry 54:19–61

    Article  Google Scholar 

  • Smith DC, Spivack A, Fisk MR et al (2000) Methods for quantifying potential microbial contamination during deep ocean coring. ODP Technical Note 28

    Google Scholar 

  • Starnawski P, Bataillon T, Ettema TJG et al (2017) Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA 114(11):2940–2945

    Article  Google Scholar 

  • Stevenson A, Cray J, Williams J et al (2015) Is there a common water-activity limit for the three domains of life? ISME J 9:1333–1351

    Article  Google Scholar 

  • Sturt HF, Summons RE, Smith K et al (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628

    Article  ADS  Google Scholar 

  • Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  ADS  Google Scholar 

  • Teske A, Sørensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407(6806):897–900

    Article  ADS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  ADS  Google Scholar 

  • Zhu R, Versteegh GJM, Hinrichs K-U (2016) Detection of microbial biomass in subseafloor sediment by pyrolysis–GC/MS. J Anal Appl Pyrolysis 118:175–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Gaboyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaboyer, F., Burgaud, G., Edgcomb, V. (2019). The Deep Subseafloor and Biosignatures. In: Cavalazzi, B., Westall, F. (eds) Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-96175-0_4

Download citation

Publish with us

Policies and ethics