Skip to main content

Detection of Biosignatures Using Raman Spectroscopy

  • Chapter
  • First Online:
Biosignatures for Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

Abstract

Raman spectroscopy is particularly suited for the study of biosignatures: it is able to detect both organic and mineral phases, is very sensitive to carbonaceous matter and biogenic pigments, and can be used in the field and for space exploration. Thus, in a few decades it has become a key method in (micro-)palaeontology, geomicrobiology and astrobiology. In this chapter, we present an overview of the different types of biosignatures that can be detected and/or characterized using Raman spectroscopy: organic molecules, microfossils, biominerals or even living cells. A particular focus is made on the role of the excitation laser wavelength on the type of biosignatures that can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Planck-Einstein equation is given by E = h.c/λ with E the energy, h the Plank constant, c the speed of light in vacuum, and λ the wavelength.

  2. 2.

    The Airy disk corresponds to the best focused spot of light through an optical system. Its diameter is given by D = 1,22.λ/NA, with NA the numerical aperture of the objective.

  3. 3.

    The depth of field of an objective is given by Δz = n.λ/(2.NA2), with n the refractive index of the material.

References

  • Alleon J, Bernard S, Guillou CL et al (2016) Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat Commun 7:11977

    Article  ADS  Google Scholar 

  • Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv 2(e1600285):1–5

    Google Scholar 

  • Baqué M, Verseux C, Böttger U et al (2016) Preservation of biomarkers from cyanobacteria mixed with mars like regolith under simulated Martian atmosphere and UV flux. Orig Life Evol Biosph 46:289–310

    Article  ADS  Google Scholar 

  • Beegle LW, Bhartia R, DeFlores L et al (2014) SHERLOC: scanning habitable environments with raman & luminescence for organics & chemicals, an investigation for 2020. In: 45th Lunar and planetary science conference, Abstract 2835

    Google Scholar 

  • Beyssac O, Goffé B, Chopin C et al (2002) Raman spectra of carbonaceous material in metasidiments: a new geothermometer. J Metamorph Geol 20:859–871

    Article  ADS  Google Scholar 

  • Beyssac O, Goffé B, Petitet J-P et al (2003) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta Part A 59:2267–2276

    Article  ADS  Google Scholar 

  • Brack A (2001) Water the spring of life. In: Baumstark-Khan C, Horneck G (eds) Astrobiology: the quest for the conditions of life. Springer, New York, pp 79–88

    Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP et al (2002) Questioning the evidence for earth’s oldest fossils. Nature 416:76–81

    Article  ADS  Google Scholar 

  • Bustin RM, Ross JV, Rouzaud JN (1995) Mechanisms of graphite formation from kerogen: experimental evidence. Int J Coal Geol 28:1–36

    Article  Google Scholar 

  • Campbell KA, Lynne BY, Handley KM et al (2015) Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology 15:858–882

    Article  ADS  Google Scholar 

  • Culka A, Jehlička J, Vandenabeele P et al (2011) The detection of biomarkers in evaporite matrices using a portable Raman instrument under alpine conditions. Spectrochim Acta Part A 80:8–13

    Article  ADS  Google Scholar 

  • Culka A, Jehlička J, Strnad L (2012) Testing a portable Raman instrument: the detection of biomarkers in gypsum powdered matrix under gypsum crystals. Spectrochim Acta Part A 86:347–350

    Article  ADS  Google Scholar 

  • Danger G, Orthous-Daunay F-R, de Marcellus P et al (2013) Characterization of laboratory analogs of interstellar/cometary organic residues using very high resolution mass spectrometry. Geochim Cosmochim Acta 118:184–201

    Article  ADS  Google Scholar 

  • De Gelder J, Gussem KD, Vandenabeele P et al (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147

    Article  ADS  Google Scholar 

  • de Marcellus P, Meinert C, Myrgorodska I et al (2015) Aldehydes and sugars from evolved precometary ice analogs: importance of ices in astrochemical and prebiotic evolution. Proc Natl Acad Sci USA 112(4):965–970

    Article  ADS  Google Scholar 

  • Deing T, Hollricher O, Toporski J (2010) Confocal Raman spectroscopy, Springer series in optical sciences 158. Heidelberg, Berlin

    Google Scholar 

  • Deldicque D, Rouzaud JN, Velde B (2016) A Raman - HRTEM study of the carbonization of wood: a new Raman-based paleothermometer dedicated to archaeometry. Carbon 102:319–329

    Article  Google Scholar 

  • Dickens J, Irvine W, Nummelin A et al (2001) Searches for new interstellar molecules, including a tentative detection of aziridine and a possible detection of propenal. Spectrochimica Acta Part A 57:643–660

    Article  ADS  Google Scholar 

  • Dubessy J, Caumon MC, Rull F (2012) Raman spectroscopy applied to earth sciences and cultural heritage, EMU notes in mineralogy 12. The Mineralogical Society of Great Britain and Ireland

    Google Scholar 

  • Edwards HGM (2004) Raman spetroscopic protocol for the molecular recognition of key biomarkers in astrobiological exploration. Orig Life Evol Biosph 34:3–11

    Article  ADS  Google Scholar 

  • Edwards HGM, Hutchinson I, Ingley R et al (2013) Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13:543–549

    Article  ADS  Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  ADS  Google Scholar 

  • Foucher F, Westall F (2013) Raman imaging of metastable opal in carbonaceous microfossils of the 700–800Ma old draken formation. Astrobiology 13:57–67

    Article  ADS  Google Scholar 

  • Foucher F, Ammar MR, Westall F (2015) Revealing the biotic origin of silicified Precambrian carbonaceous microstructures using Raman spectroscopic mapping, a potential method for the detection of microfossils on Mars. J Raman Spectrosc 46:873–879

    Article  ADS  Google Scholar 

  • Foucher F, Guimbretière G, Bost N et al (2017) Petrographical and mineralogical applications of Raman mapping. In: Maaz K (ed) Raman spectroscopy and applications. IntechOpen, London, pp 163–180

    Google Scholar 

  • Jehlička J, Bény C (1999) First and second order Raman spectra of natural highly carbonified organic compounds from metamorphic rocks. J Mol Struct 480–481:541–545

    Article  ADS  Google Scholar 

  • Jehlička J, Urban O, Pokorny J (2003) Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochim Acta Part A 59:2341–2352

    Article  ADS  Google Scholar 

  • Jehlička J, Edwards HGM, Vitek P (2009) Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies. Planet Space Sci 57:606–613

    Article  ADS  Google Scholar 

  • Jehlička J, Culka A, Nedbalova L (2016) Colonization of snow by microorganisms as revealed using miniature Raman spectrometers—possibilities for detecting carotenoids of psychrophiles on Mars? Astrobiology 16:913–924

    Article  ADS  Google Scholar 

  • Lahfid A, Beyssac O, Deville E et al (2010) Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova 22:354–360

    Article  ADS  Google Scholar 

  • Lazcano A (2011) Origin of life. In: Gargaud M, Amils R, Cernicharo Quintanilla J et al (eds) Encyclopedia of astrobiology, vol 2. Springer, Heidelberg, pp 1183–1190

    Chapter  Google Scholar 

  • Lopez-Reyes G, Rull F, Venegas G et al (2013) Analysis of the scientific capabilities of the ExoMars Raman laser spectrometer instrument. Eur J Mineral 25:721–733

    Article  Google Scholar 

  • Marshall CP, Emry JR, Marshall AO (2011) Haematite pseudomicrofossils present in the 3.5-billion-year-old apex chert. Nat Geosci 4:240–243

    Article  ADS  Google Scholar 

  • Marshall AO, Emry JR, Marshall CP (2012) Multiple generations of carbon in the apex chert and implications for preservation of microfossils. Astrobiology 12:160–166

    Article  ADS  Google Scholar 

  • Marshall CP, Marshall AO (2013) Raman hyperspectral imaging of microfossils: potential pitfalls. Astrobiology 13:920–931

    Article  ADS  Google Scholar 

  • Meinert C, Myrgorodska I, de Marcellus P et al (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352:208–212

    Article  ADS  Google Scholar 

  • Merlin JC (1985) Resonance Raman spectroscopy of carotenoids and carotenoid containing systems. Pure Appl Chem 57:785–792

    Article  Google Scholar 

  • Moreau JW, Sharp TG (2004) A transmission electron microscopy study of silica and kerogen biosignatures in ~1.9 Ga gunflint microfossils. Astrobiology 4:196–210

    Article  ADS  Google Scholar 

  • Mosier-Boss P, Putnam MD (2013) The evaluation of two commercially available, portable Raman systems. Anal Chem Insights 8:83–97

    Article  Google Scholar 

  • Pasteris JD, Wopenka B (2002) Images of the earth’s earliest fossils? Nature 420:476–477

    Article  Google Scholar 

  • Pasteris JD, Wopenka B (2003) Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3:727–738

    Article  ADS  Google Scholar 

  • Patel M, Bérces A, Kerékgyarto T et al (2004) Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv Space Res 33:1247–1252

    Article  ADS  Google Scholar 

  • Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3.800-Myr-Old microfossils. Nature 280:483–486

    Article  ADS  Google Scholar 

  • Poilblanc R, Crasnier F (2006) Spectroscopies Infrarouge et Raman, Collection Grenoble Science (ed) EDP Sciences, Grenoble

    Google Scholar 

  • Qu Y, Engdahl A, Zhu S et al (2015) Ultrastructural heterogeneity of carbonaceous material in ancient cherts: investigating biosignature origin and preservation. Astrobiology 15(10):825–842

    Article  ADS  Google Scholar 

  • Quirico E, Montagnac G, Rouzaud JN et al (2009) Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals. Earth Planet Sci Lett 287:185–193

    Article  ADS  Google Scholar 

  • Rividi N, van Zuilen M, Philippot P et al (2010) Calibration of carbonate composition using micro-Raman analysis: application to planetary surface exploration. Astrobiology 10:293–309

    Article  ADS  Google Scholar 

  • Rouzaud JN, Oberlin A (1989) Structure, microtexture, and optical properties of anthracene and saccharose-based carbons. Cent Eur J Phys 27:517–529

    Google Scholar 

  • Ruiz-Mirazo K, Moreno A (2011) Life. In: Gargaud M, Amils R, Cernicharo Quintanilla J et al (eds) Encyclopedia of astrobiology, vol 2. Springer, Heidelberg, pp 919–921

    Chapter  Google Scholar 

  • Rull-Pérez F, Martinez-Frias J (2006) Raman spectroscopy goes to Mars. Spectroscopy Europe 18:18–21

    Google Scholar 

  • Schmitt-Kopplin P, Gabelica Z, Gougeon RD et al (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 7(7):2763–2768

    Article  ADS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG et al (2002a) Laser-Raman imagery of earth’s earliest fossils. Nature 416:73–76

    Article  ADS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG et al (2002b) Images of the earth’s earliest fossils? Schopf et al reply. Nature 420:477

    Article  ADS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG et al (2005) Raman imagery: a new approach to assess the geochemical maturity and biogenecity of permineralized precambrian fossils. Astrobiology 5:333–371

    Article  ADS  Google Scholar 

  • Sforna MC, van Zuilen MA, Philippot P (2014) Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old apex chert, Western Australia. Geochim Cosmochim Acta 124:18–33

    Article  ADS  Google Scholar 

  • Vandenabeele P, Jehlička J, Vitek P, Edwards HGM (2012) On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet Space Sci 62:48–54

    Article  ADS  Google Scholar 

  • Vitek P, Osterrothova K, Jehlička J (2009) Beta-carotene - a possible biomarker in the Martian evaporitic environment: Raman micro-spectroscopic study. Planet Space Sci 57:454–459

    Article  ADS  Google Scholar 

  • Vitek P, Jehlička J, Edwards HGM et al (2012) The miniaturized Raman system and detection of traces of life in halite from the atacama desert: some considerations for the search for life signatures on Mars. Astrobiology 12:1095–1099

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the Centre National d’Etudes Spatiales for funding. I thank Frances Westall and Keyron Hickman-Lewis for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Foucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foucher, F. (2019). Detection of Biosignatures Using Raman Spectroscopy. In: Cavalazzi, B., Westall, F. (eds) Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-96175-0_13

Download citation

Publish with us

Policies and ethics