Skip to main content

Chemical Biosignatures at the Origins

  • Chapter
  • First Online:

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

Abstract

Chemists searching for chemical biosignatures begin to define the chemical prerequisites for the emergence of life, a process based on organized molecules capable of self-reproduction and also with the capability of evolution. It is generally accepted that these prerequisites are liquid water and organic molecules, i.e. molecules that contained carbon and hydrogen atoms associated with atoms of oxygen, nitrogen and sulphur. This is not just an anthropocentric point of view, since water and carbon chemistry have very specific peculiarities. Two different kinds of chemical biosignatures are considered: an overrepresentation of organics and a long strand of homochiral sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altwegg K, Balsiger H, Bar-Nun A et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347:1261952

    Article  Google Scholar 

  • Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv 27:e1600285

    Article  ADS  Google Scholar 

  • Aubrey AD, Cleaves HJ, Bada JL (2009) The role of submarine hydrothermal systems in the synthesis of amino acids. Orig Life Evol Biosph 39:91–108

    Article  ADS  Google Scholar 

  • Bailey J (2001) Astronomical sources of circularly polarized light and the origin of homochirality. Orig Life Evol Biosph 31:167–183

    Article  ADS  Google Scholar 

  • Bailey J, Chrysostomou A, Hough JH et al (1998) Circular polarization in star formation regions: implications for biomolecular homochirality. Science 281:672–674

    Article  ADS  Google Scholar 

  • Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167

    Article  ADS  Google Scholar 

  • Bar-Nun A, Bar-Nun N, Bauer SH et al (1970) Shock synthesis of amino acids in simulated primitive environments. Science 168:470–473

    Article  ADS  Google Scholar 

  • Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environment as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345

    Article  Google Scholar 

  • Bonner WA (1991) The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21:59–111

    Article  ADS  Google Scholar 

  • Brack A (2009) Impacts and origins of life. Nat Geosci 2:8–9

    Article  ADS  Google Scholar 

  • Brack A, Spach G (1981) Enantiomer enrichment in early peptides. Orig Life 11:135–142

    Article  ADS  Google Scholar 

  • Brack A, Spach G (1987) Search for chiral molecules and optical activity in extraterrestrial systems. Example of Titan. Biosystems 20:95–98

    Article  Google Scholar 

  • Brack A, Troublé M (2010) Defining life: connecting robotics and chemistry. Orig Life Evol Biosph 40:31–136

    Article  Google Scholar 

  • Brandenburg A, Andersen AC, Nilsson M (2005) Dissociation in a polymerization model of homochirality. Orig Life Evol Biosph 35:507–521

    Article  ADS  Google Scholar 

  • Brinton KLF, Engrand C, Glavin DP et al (1998) A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Orig Life Evol Biosph 28:413–424

    Article  ADS  Google Scholar 

  • Callahan MP, Smith KE, Cleaves JC II et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A 108:13995–13998

    Article  ADS  Google Scholar 

  • Catling D, Kasting JF (2007) Planetary atmospheres and life. In: Sullivan WT III, Baross JA (eds) Planets and life. Cambridge University Press, Cambridge, pp 91–116

    Chapter  Google Scholar 

  • Chang S (1993) Prebiotic synthesis in planetary environments. In: Greenberg JM, Mendoza-Gomez CX, Pirronello V (eds) The chemistry of life’s origin. Kluwer Academic, Dordrecht, pp 259–300

    Chapter  Google Scholar 

  • Cleaves HJ, Chalmers JH, Lazcano A et al (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115

    Article  ADS  Google Scholar 

  • Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    Article  ADS  Google Scholar 

  • Davies PCW, Lineweaver CH (2005) Finding a second sample of life on earth. Astrobiology 5:154–163

    Article  ADS  Google Scholar 

  • Deamer DW (1985) Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317:792–794

    Article  ADS  Google Scholar 

  • Deamer DW (1998) Membrane compartments in prebiotic evolution. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 189–205

    Chapter  Google Scholar 

  • Despois D, Cottin H (2005) Comets: potential sources of prebiotic molecules. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Berlin, pp 289–352

    Chapter  Google Scholar 

  • Dobrica E, Engrand C, Duprat J, Gounelle M, Leroux H, Quirico E, Rouzaud J-N (2013) Connection between micrometeorites and Wild 2 particles: from Antarctic snow to cometary ices. Meteorit Planet Sci 44:1643–1661

    Article  ADS  Google Scholar 

  • Ehrenfreund P, Charnley SB (2000) Organic molecules in the interstellar medium, comets and meteorites. Annu Rev Astron Astrophys 38:427–483

    Article  ADS  Google Scholar 

  • Fegley B Jr, Prinn RG, Hartman H et al (1986) Chemical effects of large impacts on the earth’s primitive atmosphere. Nature 319:305–308

    Article  ADS  Google Scholar 

  • Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem Commun 25:2578–2580

    Article  Google Scholar 

  • Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463

    Article  Google Scholar 

  • Glassmeir K-H, Boehnhardt H, Koschny D et al (2007) The Rosetta mission: flying towards the origin of the solar system. Space Sci Rev 128:1–21

    Article  ADS  Google Scholar 

  • Glavin DP, Dworkin JP, Aubrey A et al (2006) Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteorit Planet Sci 41:889–902

    Article  ADS  Google Scholar 

  • Gleiser M (2007) Asymmetric spatiotemporal evolution of prebiotic homochirality. Orig Life Evol Biosph 37:235–251

    Article  ADS  Google Scholar 

  • Goesmann F, Rosenbauer H, Bredehöft JH et al (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349:aab0689

    Article  Google Scholar 

  • Holm NG (1992) Marine hydrothermal systems and the origins of life. Orig Life Evol Biosph 22:1–191

    Article  ADS  Google Scholar 

  • Holm NG, Andersson EM (1998) Organic molecules on the early earth: hydrothermal systems. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 86–99

    Chapter  Google Scholar 

  • Holm NG, Andersson EM (2005) Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review. Astrobiology 5:444–460

    Article  ADS  Google Scholar 

  • Holm NG, Charlou J-L (2001) Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic ridge. Earth Planet Sci Lett 191:1–8

    Article  ADS  Google Scholar 

  • Israël G, Szopa C, Raulin F et al (2005) Evidence for the presence of complex organic matter in Titan’s aerosols by in situ analysis. Nature 438:796–799

    Article  ADS  Google Scholar 

  • Johnson AP, Cleaves HJ, Dworkin JP et al (2008) The Miller volcanic spark discharge experiment. Science 322:404

    Article  ADS  Google Scholar 

  • Joyce GF (1995) The RNA world: life before DNA and protein. Cambridge University Press, Cambridge, pp 139–151

    Google Scholar 

  • Kasting JF, Brown LL (1998) The early atmosphere as a source of biogenic compounds. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 35–56

    Chapter  Google Scholar 

  • Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975–976

    Article  ADS  Google Scholar 

  • Kurosawa K, Sugita S, Ishibashi K et al (2013) Hydrogen cyanide production due to mid-size impacts in a redox-neutral N2-rich atmosphere. Orig Life Evol Biosph 43:221–245

    Article  ADS  Google Scholar 

  • Luisi PL (1998) About various definitions of life. Orig Life Evol Biosph 28:613–622

    Article  ADS  Google Scholar 

  • Mac Dermott A (1995) Electroweak enantioselection and the origin of life. Orig Life Evol Biosph 25:191–199

    Article  ADS  Google Scholar 

  • Matrajt G, Pizzarello S, Taylor S et al (2004) Concentration and variability of the AIB amino acid in polar micrometeorites: implications for the exogenous delivery of amino acids to the primitive Earth. Meteorit Planet Sci 39:1849–1858

    Article  ADS  Google Scholar 

  • Maurette M (1998) Carbonaceous micrometeorites and the origin of life. Orig Life Evol Biosph 28:385–412

    Article  ADS  Google Scholar 

  • Maurette M (2006) Micrometeorites and the mysteries of our origins. Springer, Berlin

    Book  Google Scholar 

  • Maurette M, Brack A (2006) Cometary petroleum in Hadean time? Meteorit Planet Sci 41:5247

    Google Scholar 

  • McKay CP, Borucki WJ (1997) Organic synthesis in experimental impact shocks. Science 276:390–392

    Article  ADS  Google Scholar 

  • Miller SL (1953) The production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  ADS  Google Scholar 

  • Miller SL (1998) The endogenous synthesis of organic compounds. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 59–85

    Chapter  Google Scholar 

  • Nesvorny D, Jenniskens P, Levison HF et al (2010) Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys J 713:816–836

    Article  ADS  Google Scholar 

  • Niemann HB, Atreya SK, Bauer SJ et al (2005) The abundances of constituents of Titans’ atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784

    Article  ADS  Google Scholar 

  • Nordén B, Liljenzin J-O, Tokay RK (1985) Stereoselective decarboxylation of amino acids in the solid state, with special reference to chiral discrimination in prebiotic evolution. J Mol Evol 21:364–370

    Article  ADS  Google Scholar 

  • Ogata Y, Imai E-I, Honda H et al (2000) Hydrothermal circulation of seawater through hot vents and contribution of interface chemistry to prebiotic synthesis. Orig Life Evol Biosph 30:527–537

    Article  ADS  Google Scholar 

  • Oparin AI (1924) Proikhozndenie Zhizni Izd. Moskowski Rabochi

    Google Scholar 

  • Parker ET, Zhou M, Burton AS et al (2014) A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth. Angew Chem Int Ed 53:8132–8136

    Article  Google Scholar 

  • Perry RH, Wu C, Nefliu M et al (2007) Serine sublimes with spontaneous chiral amplification. Chem Commun 10:1071–1073

    Article  Google Scholar 

  • Pinti DL (2005) The origin and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Heidelberg, pp 83–112

    Chapter  Google Scholar 

  • Pizzarello S (2007) The chemistry that preceded life’s origin: a study guide from meteorites. Chem Biodivers 4:680–693

    Article  Google Scholar 

  • Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64:329–338

    Article  ADS  Google Scholar 

  • Pizzarello S, Huang Y (2005) The deuterium enrichment of individual amino acids in carbonaceous meteorites: a case for the presolar distribution of biomolecules precursors. Geochim Cosmochim Acta 69:599–605

    Article  ADS  Google Scholar 

  • Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol 2:a002105

    Article  Google Scholar 

  • Pizzarello S, Huang Y, Becker L et al (2001) The organic content of the Tagish Lake meteorite. Science 293:2236–2239

    Article  ADS  Google Scholar 

  • Pizzarello S, Zolensky M, Turk KA (2003) Non-racemic isovaline in the Murchison meteorite: chiral distribution and mineral association. Geochim Cosmochim Acta 67:1589–1595

    Article  ADS  Google Scholar 

  • Pizzarello S, Schrader DL, Monroe AA et al (2012) Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proc Natl Acad Sci USA 109:11949–11954

    Article  ADS  Google Scholar 

  • Plasson R, Bersini H, Commeyras A (2004) Recycling frank: spontaneous emergence of homochirality in noncatalytic systems. Proc Natl Acad Sci USA 101:16733–16738

    Article  ADS  Google Scholar 

  • Rikken GLJA, Raupach E (2000) Enantioselective magnetochiral photochemistry. Nature 405:932–935

    Article  ADS  Google Scholar 

  • Rubin M, Altwegg K, Balsiger H et al (2015) Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348:232–235

    Article  ADS  Google Scholar 

  • Rubinstein I, Kjaer K, Weissbuch I et al (2005) Homochiral oligopeptides generated via an asymmetric induction in racemic 2D crystallites at the air–water interface; the system ethyl/thio-ethyl esters of long-chain amphiphilic α-amino acids. Chem Commun 43:5432–5434

    Article  Google Scholar 

  • Ryder G (2003) Bombardment of the Hadean Earth: wholesome or deleterious? Astrobiology 3:3–6

    Article  ADS  Google Scholar 

  • Schlesinger G, Miller SL (1983) Prebiotic syntheses in atmospheres containing CH4, CO, and CO2. I. Amino acids. J Mol Evol 19:376–382

    Article  ADS  Google Scholar 

  • Schmitt-Kopplin P, Gabelica Z, Gougeon RD et al (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107:2763–2768

    Article  ADS  Google Scholar 

  • Shibata T, Yamamoto J, Matsumoto N et al (1998) Amplification of a slight enantiomeric imbalance in molecules based on asymmetry autocatalysis. J Am Chem Soc 120:12157–12158

    Article  Google Scholar 

  • Spach G, Brack A (1988) Chemical production of optically pure systems. In: Marx G (ed) Bioastronomy. The next steps. Kluwer Academic, Dordrecht, pp 223–231

    Chapter  Google Scholar 

  • Stoks PG, Schwartz AW (1982) Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim Cosmochim Acta 46:309–315

    Article  ADS  Google Scholar 

  • Tarasevych AV, Sorochinsky AE, Kukhar VP et al (2013) Partial sublimation of enantioenriched amino acids at low temperature. Is it coming from the formation of a euatmotic composition1 of the gaseous phase? J Org Chem 78:10530–10533

    Article  Google Scholar 

  • Tarasevych AV, Sorochinsky AE, Kukhar VP et al (2015) High temperature sublimation of a-amino acids: a realistic prebiotic process leading to large enantiomeric excess. Chem Commun 51:7054–7057

    Article  Google Scholar 

  • Tian F, Toon OB, Pavlov AA et al (2005) A hydrogen-rich early atmosphere. Science 308:1014–1017

    Article  ADS  Google Scholar 

  • Weissbuch I, Addadi L, Leiserowitz L et al (1988) Total asymmetric transformations at interfaces with centrosymmetric crystals: role of hydrophobic and kinetic effects in the crystallization of the system glycine/α-amino acids. J Am Chem Soc 110:561–567

    Article  Google Scholar 

  • Weissbuch I, Berfeld M, Bouwman W, Kjaer K, Als-Nielsen J, Lahav M, Leiserowitz L (1997) Separation of enantiomers and racemate formation in two-dimensional crystals at the water surface from racemic-amino acid amphiphiles: design and structure. J Am Chem Soc 119:933–942

    Article  Google Scholar 

  • Westall F, Foucher F, Bost N et al (2015) Biosignatures on Mars: what, where, and how? Implications for the search for Martian Life. Astrobiology 15:998–1029

    Article  ADS  Google Scholar 

  • Wikipedia: http://en.wikipedia.org/wiki/List_of_molecules_in_interstellar_space

  • Yabuta H, William LB, Cody GD et al (2007) The insoluble carbonaceous material of CM chondrites: a possible source of discrete compounds under hydrothermal conditions. Meteorit Planet Sci 42:37–48

    Article  ADS  Google Scholar 

  • Zepik H, Shavit E, Tang M et al (2002) Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water. Science 295:1266–1269

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The occasion is given here to thank all the exo/astrobiologists I have met for the quality of their company while enjoying good science, good food, and good wine. They are too numerous to be quoted individually, but they know who they are, for sure. I thank also CNES and ESA for their constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Brack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brack, A. (2019). Chemical Biosignatures at the Origins. In: Cavalazzi, B., Westall, F. (eds) Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-96175-0_1

Download citation

Publish with us

Policies and ethics