Skip to main content

Proliferative Diabetic Retinopathy: Treatment Update

  • Chapter
  • First Online:
Clinical Strategies in the Management of Diabetic Retinopathy

Abstract

Proliferative diabetic retinopathy (PDR) is a leading cause of vision loss, and it is characterized by retinal neovascularization at the disc (NVD) or elsewhere in the retina (NVE). Panretinal photocoagulation (PRP) has been the standard treatment for PDR for more than four decades. However, this destructive treatment may be associated with several side effects. For this reason, in recent years, new, more selective, laser treatment modalities have been studied in order to maintain efficacy while reducing side effects.

Many studies have implicated vascular endothelial growth factor (VEGF) in the pathogenesis of PDR, and it has also been shown that treatment with repeated injections of anti-VEGF can improve visual acuity in patients with PDR and cause regression of NV. Combining PRP with intravitreal anti-VEGF injections seems a promising strategy for selected cases, at least partially avoiding the limitations of a monotherapy approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank RN. Visual fields and electroretinography following extensive photocoagulation. Arch Ophthalmol. 1975;93(8):591–8.

    Article  CAS  Google Scholar 

  2. Mcdonald HR, Schatz H. Visual loss following panretinal photocoagulation for proliferative diabetic retinopathy. Ophthalmology. 1985;92(3):388–93.

    Article  CAS  Google Scholar 

  3. Mcdonald HR, Schatz H. Macular edema following panretinal photocoagulation. Retina. 1985;5(1):5–10.

    Article  CAS  Google Scholar 

  4. Blumenkranz MS, Yellachich D, Andersen DE, et al. Semiautomated patterned scanning laser for retinal photocoagulation. Retina. 2006;26(3):370–6.

    Article  Google Scholar 

  5. Schuele G, Rumohr M, Huettmann G, Brinkmann R. RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen. Invest Ophthalmol Vis Sci. 2005;46(2):714–9.

    Article  Google Scholar 

  6. Nagpal M, Marlecha S, Nagpal K. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multispot pattern scan laser. Retina. 2010;30(3):452–8.

    Article  Google Scholar 

  7. Sanghvi C, Mclauchlan R, Delgado C, et al. Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures. Br J Ophthalmol. 2008;92(8):1061–4.

    Article  CAS  Google Scholar 

  8. Sheth S, Lanzetta P, Veritti D, Zucchiatti I, Savorgnani C, Bandello F. Experience with the Pascal® photocoagulator: an analysis of over 1,200 laser procedures with regard to parameter refinement. Indian J Ophthalmol. 2011;59(2):87–91.

    Article  Google Scholar 

  9. Takamura Y, Arimura S, Miyake S, et al. Panretinal photocoagulation using short-pulse laser induces less inflammation and macular thickening in patients with diabetic retinopathy. J Ophthalmol. 2017;2017:8530261.

    Article  Google Scholar 

  10. Agrawal KK, Gentile RC. Evolution of retinal laser photocoagulation: pattern, navigated, and micropulse. Ret Phys. 2015;12:22–7.

    Google Scholar 

  11. Ober MD, Hariprasad SM. Retinal lasers: past, present, and future. Ret Phys. 2009;6(1):36–9.

    Google Scholar 

  12. Kozak I, Oster SF, Cortes MA, et al. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology. 2011;118(6):1119–24.

    Article  Google Scholar 

  13. Kernt M, Cheuteu R, Vounotrypidis E, et al. Focal and panretinal photocoagulation with a navigated laser (NAVILAS®). Acta Ophthalmol. 2011;89(8):e662–4.

    Article  Google Scholar 

  14. Kozak I, Kim JS, Oster SF, Chhablani J, Freeman WR. Focal navigated laser photocoagulation in retinovascular disease: clinical results in initial case series. Retina. 2012;32(5):930–5.

    Article  Google Scholar 

  15. Chhablani J, Mathai A, Rani P, Gupta V, Arevalo JF, Kozak I. Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014;55(6):3432–8.

    Article  Google Scholar 

  16. Reddy S, Hu A, Schwartz SD. Ultra wide field fluorescein angiography guided targeted retinal photocoagulation (TRP). Semin Ophthalmol. 2009;24(1):9–14.

    Article  Google Scholar 

  17. Muqit MM, Young LB, Mckenzie R, et al. Pilot randomised clinical trial of Pascal TargETEd retinal versus variable fluence PANretinal 20 ms laser in diabetic retinopathy: PETER PAN study. Br J Ophthalmol. 2013;97(2):220–7.

    Article  Google Scholar 

  18. Muqit MM, Marcellino GR, Henson DB, et al. Optos-guided pattern scan laser (Pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. Acta Ophthalmol. 2013;91(3):251–8.

    Article  Google Scholar 

  19. Spaide RF. Prospective study of peripheral panretinal photocoagulation of areas of nonperfusion in central retinal vein occlusion. Retina. 2013;33(1):56–62.

    Article  Google Scholar 

  20. Funatsu H, Hori S, Yamashita H, Kitano S. Effective mechanisms of laser photocoagulation for neovascularization in diabetic retinopathy. Nippon Ganka Gakkai Zasshi. 1996;100(5):339–49.

    CAS  PubMed  Google Scholar 

  21. Flaxel C, Bradle J, Acott T, Samples JR. Retinal pigment epithelium produces matrix metalloproteinases after laser treatment. Retina. 2007;27(5):629–34.

    Article  Google Scholar 

  22. Hattenbach LO, Beck KF, Pfeilschifter J, Koch F, Ohrloff C, Schacke W. Pigment-epithelium-derived factor is upregulated in photocoagulated human retinal pigment epithelial cells. Ophthalmic Res. 2005;37(6):341–6.

    Article  Google Scholar 

  23. Quin GJ, Lyons B, Len AC, Madigan MC, Gillies MC. Proteome changes induced by laser in diabetic retinopathy. Clin Exp Ophthalmol. 2015;43(2):180–7.

    Article  Google Scholar 

  24. Dorin G. Subthreshold and micropulse diode laser photocoagulation. Semin Ophthalmol. 2003;18(3):147–53.

    Article  Google Scholar 

  25. Lanzetta P, Dorin G, Pirracchio A, Bandello F. Theoretical bases of non-ophthalmoscopically visible endpoint photocoagulation. Semin Ophthalmol. 2001;16(1):8–11.

    Article  CAS  Google Scholar 

  26. Su D, Hubschman JP. A review of subthreshold micropulse laser and recent advances in retinal laser technology. Ophthalmol Ther. 2017;6(1):1–6.

    Article  CAS  Google Scholar 

  27. Lanzetta P, Polito A, Veritti D. Subthreshold laser. Ophthalmology. 2008;115(1):216–216.e1.

    Article  Google Scholar 

  28. Lanzetta P, Furlan F, Morgante L, Veritti D, Bandello F. Nonvisible subthreshold micropulse diode laser (810 nm) treatment of central serous chorioretinopathy. A pilot study. Eur J Ophthalmol. 2008;18(6):934–40.

    Article  CAS  Google Scholar 

  29. Laursen ML, Moeller F, Sander B, Sjoelie AK. Subthreshold micropulse diode laser treatment in diabetic macular oedema. Br J Ophthalmol. 2004;88(9):1173–9.

    Article  CAS  Google Scholar 

  30. Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol. 2009;93(10):1341–4.

    Article  CAS  Google Scholar 

  31. Luttrull JK, Musch DC, Spink CA. Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy. Eye (Lond). 2008;22(5):607–12.

    Article  CAS  Google Scholar 

  32. Kaiser RS, Maguire MG, Grunwald JE, et al. One-year outcomes of panretinal photocoagulation in proliferative diabetic retinopathy. Am J Ophthalmol. 2000;129(2):178–85.

    Article  CAS  Google Scholar 

  33. Lavinsky D, Sramek C, Wang J, et al. Subvisible retinal laser therapy: titration algorithm and tissue response. Retina. 2014;34(1):87–97.

    Article  Google Scholar 

  34. Lavinsky D, Palanker D. Nondamaging photothermal therapy for the retina: initial clinical experience with chronic central serous retinopathy. Retina. 2015;35(2):213–22.

    Article  CAS  Google Scholar 

  35. Brinkmann R, Roider J, Birngruber R. Selective retina therapy (SRT): a review on methods, techniques, preclinical and first clinical results. Bull Soc Belge Ophtalmol. 2006;302:51–69.

    Google Scholar 

  36. Roider J, Liew SH, Klatt C, et al. Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2010;248(9):1263–72.

    Article  Google Scholar 

  37. Arevalo JF, Garcia-amaris RA. Intravitreal bevacizumab for diabetic retinopathy. Curr Diabetes Rev. 2009;5(1):39–46.

    Article  CAS  Google Scholar 

  38. Li X, Zarbin MA, Bhagat N. Anti-vascular endothelial growth factor injections: the new standard of care in proliferative diabetic retinopathy? Dev Ophthalmol. 2017;60:131–42.

    Article  Google Scholar 

  39. Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801.

    Article  Google Scholar 

  40. Ip MS, Domalpally A, Hopkins JJ, Wong P, Ehrlich JS. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol. 2012;130(9):1145–52.

    Article  CAS  Google Scholar 

  41. Wykoff CC, Elman MJ, Regillo CD, Ding B, Lu N, Stoilov I. Predictors of diabetic macular edema treatment frequency with ranibizumab during the open-label extension of the RIDE and RISE trials. Ophthalmology. 2016;123(8):1716–21.

    Article  Google Scholar 

  42. Elman MJ, Aiello LP, Beck RW, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117(6):1064–1077.e35.

    Article  Google Scholar 

  43. Gross JG, Glassman AR, Jampol LM, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314(20):2137–46.

    Article  CAS  Google Scholar 

  44. Korobelnik JF, Do DV, Schmidt-erfurth U, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121(11):2247–54.

    Article  Google Scholar 

  45. Sivaprasad S, Prevost AT, Vasconcelos JC, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet. 2017;389(10085):2193–203.

    Article  CAS  Google Scholar 

  46. Hutton DW, Stein JD, Bressler NM, et al. Cost-effectiveness of intravitreous ranibizumab compared with panretinal photocoagulation for proliferative diabetic retinopathy: secondary analysis from a diabetic retinopathy clinical research network randomized clinical trial. JAMA Ophthalmol. 2017;135(6):576–84.

    Article  Google Scholar 

  47. Avery RL, Gordon GM. Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol. 2016;134(1):21–9.

    Article  Google Scholar 

  48. Stewart MW. Treatment of diabetic retinopathy: recent advances and unresolved challenges. World J Diabetes. 2016;7(16):333–41.

    Article  Google Scholar 

  49. Dugel PU, Jaffe GJ, Sallstig P, et al. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology. 2017;124(9):1296–304.

    Article  Google Scholar 

  50. Googe J, Brucker AJ, Bressler NM, et al. Randomized trial evaluating short-term effects of intravitreal ranibizumab or triamcinolone acetonide on macular edema after focal/grid laser for diabetic macular edema in eyes also receiving panretinal photocoagulation. Retina. 2011;31(6):1009–27.

    Article  CAS  Google Scholar 

  51. Soman M, Ganekal S, Nair U, Nair K. Effect of panretinal photocoagulation on macular morphology and thickness in eyes with proliferative diabetic retinopathy without clinically significant macular edema. Clin Ophthalmol. 2012;6:2013–7.

    PubMed  PubMed Central  Google Scholar 

  52. Sameen M, Khan MS, Mukhtar A, Yaqub MA, Ishaq M. Efficacy of intravitreal bevacizumab combined with pan retinal photocoagulation versus panretinal photocoagulation alone in treatment of proliferative diabetic retinopathy. Pak J Med Sci. 2017;33(1):142–5.

    Article  Google Scholar 

  53. Cho WB, Oh SB, Moon JW, Kim HC. Panretinal photocoagulation combined with intravitreal bevacizumab in high-risk proliferative diabetic retinopathy. Retina. 2009;29(4):516–22.

    Article  Google Scholar 

  54. Zhou AY, Zhou CJ, Yao J, Quan YL, Ren BC, Wang JM. Panretinal photocoagulation versus panretinal photocoagulation plus intravitreal bevacizumab for high-risk proliferative diabetic retinopathy. Int J Ophthalmol. 2016;9(12):1772–8.

    PubMed  PubMed Central  Google Scholar 

  55. Tonello M, Costa RA, Almeida FP, Barbosa JC, Scott IU, Jorge R. Panretinal photocoagulation versus PRP plus intravitreal bevacizumab for high-risk proliferative diabetic retinopathy (IBeHi study). Acta Ophthalmol. 2008;86(4):385–9.

    Article  CAS  Google Scholar 

  56. Filho JA, Messias A, Almeida FP, et al. Panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab for high-risk proliferative diabetic retinopathy. Acta Ophthalmol. 2011;89(7):e567–72.

    Article  CAS  Google Scholar 

  57. Ferraz DA, Vasquez LM, Preti RC, et al. A randomized controlled trial of panretinal photocoagulation with and without intravitreal ranibizumab in treatment-naive eyes with non-high-risk proliferative diabetic retinopathy. Retina. 2015;35(2):280–7.

    Article  CAS  Google Scholar 

  58. Yan P, Qian C, Wang W, Dong Y, Wan G, Chen Y. Clinical effects and safety of treating diabetic macular edema with intravitreal injection of ranibizumab combined with retinal photocoagulation. Ther Clin Risk Manag. 2016;12:527–33.

    Article  CAS  Google Scholar 

  59. Figueira J, Fletcher E, Massin P, et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS Study). Ophthalmology. 2018;125(5):691–700.

    Article  Google Scholar 

  60. Bandello F, Polito A, Pognuz DR, Monaco P, Dimastrogiovanni A, Paissios J. Triamcinolone as adjunctive treatment to laser panretinal photocoagulation for proliferative diabetic retinopathy. Arch Ophthalmol. 2006;124(5):643–50.

    Article  CAS  Google Scholar 

  61. Liu L, Wu X, Geng J, Yuan Z, Chen L. IVTA as adjunctive treatment to PRP and MPC for PDR and macular edema: a meta-analysis. PLoS One. 2012;7(9):e44683.

    Article  CAS  Google Scholar 

  62. Lopez-lopez F, Gomez-ulla F, Rodriguez-cid MJ, Arias L. Triamcinolone and bevacizumab as adjunctive therapies to panretinal photocoagulation for proliferative diabetic retinopathy. ISRN Ophthalmol. 2012;2012:267643.

    Article  CAS  Google Scholar 

  63. Gillies MC, Simpson JM, Billson FA, et al. Safety of an intravitreal injection of triamcinolone: results from a randomized clinical trial. Arch Ophthalmol. 2004;122(3):336–40.

    Article  CAS  Google Scholar 

  64. Gillies MC, Kuzniarz M, Craig J, Ball M, Luo W, Simpson JM. Intravitreal triamcinolone-induced elevated intraocular pressure is associated with the development of posterior subcapsular cataract. Ophthalmology. 2005;112(1):139–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lanzetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veritti, D., Sarao, V., Samassa, F., Gambato, T., Zarbin, M.A., Lanzetta, P. (2019). Proliferative Diabetic Retinopathy: Treatment Update. In: Bandello, F., Zarbin, M., Lattanzio, R., Zucchiatti, I. (eds) Clinical Strategies in the Management of Diabetic Retinopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-96157-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96157-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96156-9

  • Online ISBN: 978-3-319-96157-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics