Skip to main content

Survey Analysis of Automatic Detection and Grading of Cataract Using Different Imaging Modalities

  • Chapter
  • First Online:
Applications of Intelligent Technologies in Healthcare

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

Cataract is the most common ocular disease mainly developed during old age. It occurs due to the buildup of protein at lens over a long period of time which makes the lens cloudy. Early and accurate diagnosis of cataract helps prevent vision loss. To alleviate the burden of ophthalmologist, many researchers working in the field of biomedical imaging developed a number of techniques for the automatic detection and grading of cataract. Imaging modalities used for this purpose includes slit-lamp images, retro-illumination images, digital/optical eye images, retinal images, and ultrasonic Nakagami images. In this paper, we review cataract detection and grading methodologies using these imaging modalities. For each imaging type, we analyze the possible methods and techniques applied so far. We also investigated the advantages and shortcomings of these techniques and methods and suggested the ways to improve the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Z., Srivastava, R., Liu, H., Chen, X., Duan, L., Wong, D. W. K., Kwoh, C. K., Wong, T. Y., & Liu, J. (2014). A survey on computer aided diagnosis for ocular diseases. BMC Medical Informatics and Decision Making. Retrieved from http://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-14-80

  2. Shirole, T. (2014, November 4). About Cataract. Retrieved from http://www.medindia.net/patients/patientinfo/cataract.htm

  3. Kinard, E. T. A Closer Look at Cataract. Retrieved from http://www.athenseyecare.net/conditions/cataracts/?

  4. All 3 Article What is cataract? (2010, August 4). Retrieved from http://www.parentyourparents.com/pyp_article/cataracts/?

  5. Seddon, J., Fong, D., West, S. K., & Valmadrid, C. T. (1995). Epidemiology of risk factors for age-related cataract. Survey of Ophthalmology, 39(4), 323–334.

    Article  Google Scholar 

  6. Pizzarello, L., Abiose, A., Ffytche, T., Duerksen, R., Thulasiraj, R., Taylor, H., & Resnikoff, S. (2004). VISION 2020: The right to sight: A global initiative to eliminate avoidable blindness. Archives of Ophthalmology, 122(4), 615–620.

    Article  Google Scholar 

  7. Figure 1 Normal Vs Cataract Vision. Retrieved from http://www.eyecenter.com.ph/what-we-do.html#ripen. ©Copyright 2011. American Eye Center.

  8. Delcourt, C., Cristol, J. P., Tessier, F., Léger, C. L., Michel, F., Papoz, L., & POLA Study Group. (2000). Risk factors for cortical, nuclear, and posterior sub-capsular cataracts: the POLA study. American Journal of Epidemiology, 151(5), 497–504.

    Article  Google Scholar 

  9. Chylack, L. T., Wolfe, J. K., Singer, D. M., Leske, M. C., Bullimore, M. A., Bailey, I. L., Friend, J., McCarthy, D., & Wu, S. Y. (1993). The lens opacities classification system III. Archives of Ophthalmology, 111(6), 831–836.

    Article  Google Scholar 

  10. Panchapakesan, J., Cumming, R. G., & Mitchell, P. (1997). Reproducibility of the Wisconsin cataract grading system in the Blue Mountains Eye Study. Ophthalmic Epidemiology, 4(3), 119–126.

    Article  Google Scholar 

  11. Li, H., Lim, J. H., Liu, J., Wong, D. W. K., Tan, N. M., Lu, S., Zhang, Z., & Wong, T. Y. (2009, September). An automatic diagnosis system of nuclear cataract using slit-lamp images. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual international conference of the IEEE (pp. 3693–3696). IEEE.

    Google Scholar 

  12. Srivastava, R., Gao, X., Yin, F., Wong, D. W., Liu, J., Cheung, C. Y., & Wong, T. Y. (2014). Automatic nuclear cataract grading using image gradients. Journal of Medical Imaging, 1(1), 014502–014502.

    Article  Google Scholar 

  13. Gao, X., Lin, S., & Wong, T. Y. (2015). Automatic feature learning to grade nuclear cataracts based on deep learning. Biomedical engineering, IEEE transactions on, 62(11), 2693–2701.

    Article  Google Scholar 

  14. Jagadale, A. B., & Jadhav, D. V. (2016, April). Early detection and categorization of cataract using slit-lamp images by hough circular transform. In Communication and Signal Processing (ICCSP), 2016 international conference on (pp. 0232–0235). IEEE.

    Google Scholar 

  15. Liu, X., Jiang, J., Zhang, K., Long, E., Cui, J., Zhu, M., An, Y., Zhang, J., Liu, Z., Lin, Z., & Li, X. (2017). Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PloS one, 12(3), e0168606.

    Article  Google Scholar 

  16. Chow, Y. C., Gao, X., Li, H., Lim, J. H., Sun, Y., & Wong, T. Y. (2011, August). Automatic detection of cortical and PSC cataracts using texture and intensity analysis on retro-illumination lens images. In Engineering in Medicine and Biology Society, EMBC, 2011 annual international conference of the IEEE (pp. 5044–5047). IEEE.

    Google Scholar 

  17. Gao, X., Wong, D. W. K., Aryaputera, A. W., Sun, Y., Cheng, C. Y., Cheung, C., & Wong, T. Y. (2012, August). Automatic pterygium detection on cornea images to enhance computer-aided cortical cataract grading system. In Engineering in Medicine and Biology Society (EMBC), 2012 annual international conference of the IEEE (pp. 4434–4437). IEEE.

    Google Scholar 

  18. Zhang, W., & Li, H. (2017). Lens opacity detection for serious posterior subcapsular cataract. Medical & Biological Engineering & Computing, 55(5), 769–779.

    Article  Google Scholar 

  19. Akram, M. U., Tariq, A., Khan, S. A., & Javed, M. Y. (2014). Automated detection of exudates and macula for grading of diabetic macular edema. Computer Methods and Programs in Biomedicine, 114(2), 141–152.

    Article  Google Scholar 

  20. Akram, M. U., Khalid, S., Tariq, A., Khan, S. A., & Azam, F. (2014). Detection and classification of retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine, 45, 161–171.

    Article  Google Scholar 

  21. Akram, M. U., Khalid, S., Tariq, A., & Javed, M. Y. (2013). Detection of neovascularization in retinal images using multivariate m-Mediods based classifier. Computerized Medical Imaging and Graphics, 37(5), 346–357.

    Article  Google Scholar 

  22. Yang, M., Yang, J. J., Zhang, Q., Niu, Y., & Li, J. (2013, October). Classification of retinal image for automatic cataract detection. In e-Health Networking, Applications & Services (Healthcom), 2013 IEEE 15th international conference on (pp. 674–679). IEEE.

    Google Scholar 

  23. Guo, L., Yang, J. J., Peng, L., Li, J., & Liang, Q. (2015). A computer-aided health-care system for cataract classification and grading based on fundus image analysis. Computers in Industry, 69, 72–80.

    Article  Google Scholar 

  24. Yang, J. J., Li, J., Shen, R., Zeng, Y., He, J., Bi, J., Li, Y., Zhang, Q., Peng, L., & Wang, Q. (2016). Exploiting ensemble learning for automatic cataract detection and grading. Computer Methods and Programs in Biomedicine, 124, 45–57.

    Article  Google Scholar 

  25. Xiong, L., Li, H., & Xu, L. (2017). An Approach to Evaluate Blurriness in Retinal Images with Vitreous Opacity for Cataract Diagnosis. Journal of Healthcare Engineering, 2017, 5645498.

    Article  Google Scholar 

  26. Jamal, A., Hazim Alkawaz, M., Rehman, A., & Saba, T. (2017). Retinal imaging analysis based on vessel detection. Microscopy Research and Technique., 80(7), 799–811.

    Article  Google Scholar 

  27. Supriyanti, R., & Ramadhani, Y. (2011, June). The Achievement of Various Shapes of Specular Reflections for Cataract Screening System Based on Digital Images. In International Conference on Biomedical Engineering and Technology (ICBET). Kualalumpur, Malaysia.

    Google Scholar 

  28. Patwari, M. A. U., Arif, M. D., Chowdhury, M. N., Arefin, A., & Imam, M. I. (2011). Detection, categorization, and assessment of eye cataracts using digital image processing. In The first international conference on interdisciplinary research and development, 31 May–1 June.

    Google Scholar 

  29. Fuadah, Y. N., Setiawan, A. W., & Mengko, T. L. R. (2015, May). Performing high accuracy of the system for cataract detection using statistical texture analysis and K-Nearest Neighbor. In Intelligent Technology and Its Applications (ISITIA), 2015 international seminar on (pp. 85–88). IEEE.

    Google Scholar 

  30. Tsui, P. H., Huang, C. C., Chang, C. C., Wang, S. H., & Shung, K. K. (2007). Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro. Physics in Medicine and Biology, 52(21), 6413.

    Article  Google Scholar 

  31. Caixinha, M., Jesus, D. A., Velte, E., Santos, M. J., & Santos, J. B. (2014). Using ultrasound backscattering signals and Nakagami statistical distribution to assess regional cataract hardness. Biomedical Engineering, IEEE Transactions on, 61(12), 2921–2929.

    Article  Google Scholar 

  32. Caixinha, M., Velte, E., Santos, M., & Santos, J. B. (2014, September). New approach for objective cataract classification based on ultrasound techniques using multiclass SVM classifiers. In Ultrasonics Symposium (IUS), 2014 IEEE International (pp. 2402–2405). IEEE.

    Google Scholar 

  33. Caxinha, M., Velte, E., Santos, M., Perdigão, F., Amaro, J., Gomes, M., & Santos, J. (2015). Automatic Cataract Classification based on Ultrasound Technique Using Machine Learning: A comparative Study. Physics Procedia, 70, 1221–1224.

    Article  Google Scholar 

  34. Pathak, S., & Kumar, B. (2016). A Robust Automated Cataract Detection Algorithm Using Diagnostic Opinion Based Parameter Thresholding for Telemedicine Application. Electronics, 5(3), 57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaheen, I., Tariq, A. (2019). Survey Analysis of Automatic Detection and Grading of Cataract Using Different Imaging Modalities. In: Khan, F., Jan, M., Alam, M. (eds) Applications of Intelligent Technologies in Healthcare. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-96139-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96139-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96138-5

  • Online ISBN: 978-3-319-96139-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics