Skip to main content

Predicting Drug Target Interactions Based on GBDT

  • Conference paper
  • First Online:
Book cover Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10934))

Abstract

The research of the drug-target interactions (DTIs) is of great significance for drug development. Traditional chemical experiments are expensive and time-consuming. In recent years, many computational approaches based on different principles have been proposed gradually. Most of them use the information of drug-drug similarity and target-target similarity and made some progress. But the result is far from satisfactory. In this paper, we proposed machine learning method based on GBDT to predict DTIs with the IDs of both drug and protein, the descriptor of them, known DTIs and double negative samples. After gradient boosting and supervised training, GBDT construct decision trees for drug-target networks and generate precise model to predict new DTIs. Experimental results shows that Gradient Boosting Decision Tree (GBDT) reaches or outperforms other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos, R., Ursu, O., Gaulton, A., et al.: A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16(1), 19 (2017)

    Article  Google Scholar 

  2. Law, V., Knox, C., Djoumbou, Y., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42(Database issue), D1091 (2014)

    Article  Google Scholar 

  3. Wishart, D.S., Feunang, Y.D., Guo, A.C., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (2017)

    Article  Google Scholar 

  4. Mei, J.P., Kwoh, C.K., Yang, P., et al.: Drugtarget interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)

    Article  Google Scholar 

  5. DrugBank. https://www.drugbank.ca/

  6. Van, L.T., Nabuurs, S.B., Marchiori, E.: Gaussian Interaction Profile Kernels for Predicting Drug-Target Interaction. Oxford University Press, Oxford (2011)

    Google Scholar 

  7. Van, L.T., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 8(6), e66952 (2013)

    Article  Google Scholar 

  8. Gnen, M.: Predicting drugtarget interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304 (2012)

    Article  Google Scholar 

  9. Zheng, X., Ding, H., Mamitsuka, H., et al.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033. ACM (2013)

    Google Scholar 

  10. Lu, Y., Guo, Y., Korhonen, A.: Link prediction in drug-target interactions network using similarity indices. BMC Bioinform. 18(1), 39 (2017)

    Article  Google Scholar 

  11. Cao, D.S., Zhang, L.X., Tan, G.S., et al.: Computational prediction of drugtarget interactions using chemical, biological, and network features. Mol. Inform. 33(10), 669 (2014)

    Article  Google Scholar 

  12. Cao, D.S., Liu, S., Xu, Q.S., et al.: Large-scale prediction of drug-target interactions using protein sequences and drug topological structures. Anal. Chim. Acta 752(21), 1 (2012)

    Article  Google Scholar 

  13. Ding, Y., Tang, J., Guo, F.: Identification of drug-target interactions via multiple information integration. Inf. Sci. 418, 546–560 (2017)

    Article  Google Scholar 

  14. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  15. Ye, J., Chow, J.H., Chen, J., et al.: Stochastic gradient boosted distributed decision trees. In: ACM Conference on Information and Knowledge Management, pp. 2061–2064 (2009)

    Google Scholar 

  16. Chen, T., He, T., Benesty, M.: Xgboost: extreme gradient boosting. R Package Version 0.4-2, 1–4 (2015)

    Google Scholar 

  17. Cao, D.S., Liang, Y.Z., Yan, J., et al.: PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies. J. Chem. Inf. Model. 53(11), 3086–3096 (2013)

    Article  Google Scholar 

  18. Lobo, J.M., Jimnez-Valverde, A., Real, R.: AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008)

    Article  Google Scholar 

  19. Rodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 569–575 (2010)

    Article  Google Scholar 

  20. Chen, X., Yan, C.C., Zhang, X., et al.: Drugtarget interaction prediction: databases, web servers and computational models. Brief. Bioinform. 17(4), 696 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyou Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Wang, J., Wang, X., Du, Y., Chang, H. (2018). Predicting Drug Target Interactions Based on GBDT. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96136-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96135-4

  • Online ISBN: 978-3-319-96136-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics