Skip to main content

The Wild Bootstrap Resampling in Regression Imputation Algorithm with a Gaussian Mixture Model

  • Conference paper
  • First Online:
  • 1972 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10935))

Abstract

Unsupervised learning of finite Gaussian mixture model (FGMM) is used to learn the distribution of population data. This paper proposes the use of the wild bootstrapping to create the variability of the imputed data in single missing data imputation. We compare the performance and accuracy of the proposed method in single imputation and multiple imputation from the R-package Amelia II using RMSE, R-squared, MAE and MAPE. The proposed method shows better performance when compared with the multiple imputation (MI) which is indeed known as the golden method of missing data imputation techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rubin, D.B.: Multiple imputations in sample surveys - a phenomenological Bayesian approach to nonresponse. In: Proceedings of the Survey Research Methods Section of the American Statistical Association, pp. 20–34 (1978)

    Google Scholar 

  2. Honaker, J., King, G., Blackwell, M.: Amelia II: a program for missing data. J. Stat. Softw. 45(7), 47 (2006)

    Google Scholar 

  3. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  Google Scholar 

  4. Ghahramani, Z., Jordan, M.I.: Supervised learning from incomplete data via an EM approach. In: Advances in Neural Information Processing Systems, vol. 6, pp. 120–127 (1994)

    Google Scholar 

  5. Di Zio, M., Ugo, G., Luzi, O.: Imputation through finite Gaussian mixture models. Comput. Stat. Data Anal. 51(11), 5305–5316 (2007)

    Article  MathSciNet  Google Scholar 

  6. Paik, M.: Fractional Imputation. Unpublished Doctoral thesis, Iowa State University, USA (2009)

    Google Scholar 

  7. Srivastava, M.S., Dolatabadi, M.: Multiple imputation and other resampling schemes for imputing missing observations. J. Multivar. Anal. 100(9), 1919–1937 (2009)

    Article  MathSciNet  Google Scholar 

  8. Wu, C.F.J.: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 14(4), 1261–1295 (1986)

    Article  MathSciNet  Google Scholar 

  9. Liu, R.Y.: Bootstrap procedures under some non-i.i.d. models. Ann. Stat. 16(4), 1696–1708 (1988)

    Article  MathSciNet  Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Eirola, E., Lendasse, A., Vandewalle, V., Biernacki, C.: Mixture of Gaussians for distance estimation with missing data. Neurocomputing 131, 32–42 (2014)

    Article  Google Scholar 

  12. Rao, J.N.K., Shao, J.: Jackknife variance estimation with survey data under hot deck imputation. Biom. Trust 79(4), 811–822 (1992)

    Article  MathSciNet  Google Scholar 

  13. Enders, C.K.: Applied Missing Data Analysis. The Guilford Press, New York (2010)

    Google Scholar 

  14. Harvey, C.R.: The specification of conditional expectations. J. Empir. Financ. 8(5), 573–637 (2001)

    Article  Google Scholar 

  15. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  Google Scholar 

  16. Hardle, W., Mammen, E.: Comparing Nonparametric versus Parametric Regression Fits. Ann. Stat. 21, 1926–1947 (1993)

    Article  MathSciNet  Google Scholar 

  17. Zadkarami, M.: Bootsrapping: a nonparametric approach to identify the effect of sparsity of data in the binary regression models. J. Appl. Sci. 8(17), 2991–2997 (2008)

    Article  Google Scholar 

  18. Cribari-Neto, F., Zarkos, S.G.: Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing. Econom. Rev. 18(2), 211–228 (1999)

    Article  Google Scholar 

  19. Azzalini, A., Bowman, A.W.: A look at some data on the old faithful geyser. J. R. Stat. Soc. 39(3), 357–365 (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Neagu .

Editor information

Editors and Affiliations

Appendix A: The Notation List

Appendix A: The Notation List

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mat Jasin, A., Neagu, D., Csenki, A. (2018). The Wild Bootstrap Resampling in Regression Imputation Algorithm with a Gaussian Mixture Model. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10935. Springer, Cham. https://doi.org/10.1007/978-3-319-96133-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96133-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96132-3

  • Online ISBN: 978-3-319-96133-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics