Skip to main content

Deterministic Parameter Control in Differential Evolution with Combined Variants for Constrained Search Spaces

  • Conference paper
  • First Online:
  • 374 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 785))

Abstract

This chapter presents an empirical comparison of six deterministic parameter control schemes based on a sinusoidal behavior that are incorporated into a differential evolution algorithm called “Differential Evolution with Combined Variants” (DECV) to solve constrained numerical optimization problems. Besides, the feasibility rules and the ε-constrained method are adopted as constraint-handling techniques.

Two parameters are considered in this work, F (related with the mutation operator) and CR (related with the crossover operator). Two DECV versions (rand-best) and (best-rand) are assessed. From the above elements, 24 different variants are tested in 36 well-known benchmark problems (in 10 and 30 dimensions). Two performance measures used in evolutionary constrained optimization (successful percentage and average number of evaluations in successful runs) are adopted to evaluate the performance of each variant. Five experiments are proposed to compare (1) those variants with the feasibility rules, (2) those variants with the \( \varepsilon \)-constrained method, (3) the most competitive variants from the previous two experiments, (4) the convergence plots of those most competitive variants and (5) the significant statistical differences of feasible final results among variants.

The obtained results suggest that an increasing oscillation of F and CR values, starting around 0.5 and then moving between 0 and 1, is suitable for the (rand-best) DECV variant. In contrast, a decreasing oscillation of both parameter values is suitable for the (best-rand) DECV variant. The convergence behavior observed in the most competitive variants indicates the convenience of the increasing oscillation of both parameters, coupled with the rand-best DECV version, to promote a faster convergence. The \( \varepsilon \)-constrained method showed to be more competitive with this type of parameter control than the feasibility rules. Finally, no significant differences among variants were observed based on final feasible results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of np-Completeness (1979)

    Google Scholar 

  2. Schütze, O., Alvarado, S., Segura, C., Landa, R.: Gradient subspace approximation: a direct search method for memetic computing. Soft. Comput. 21(21), 6331–6350 (2017)

    Article  Google Scholar 

  3. Alvarado, S., Segura, C., Schütze, O.: The gradient subspace approximation as local search engine within evolutionary multi-objective optimization algorithms. Computación y Sistemas (to appear)

    Google Scholar 

  4. Deb, K.: Optimization for Engineering Design: Algorithms and Examples. Prentices-Hall of India, New Delhi (2000)

    Google Scholar 

  5. Eiben, A.E., Smith, J.E., et al.: Introduction to Evolutionary Computing, vol. 53. Springer, Berlin (2003)

    Book  Google Scholar 

  6. Yang X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)

    Google Scholar 

  7. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization: Methods and Case Studies. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  8. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2009), pp. 399–406 (2009)

    Google Scholar 

  9. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

    Article  Google Scholar 

  10. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  11. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  12. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  13. Mezura-Montes, E., Coello-Coello, C.A.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evolut. Comput. 1(4), 173–194 (2011)

    Article  Google Scholar 

  14. Coello-Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11–12), 1245–1287 (2002)

    Article  MathSciNet  Google Scholar 

  15. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  Google Scholar 

  16. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites. In: IEEE Congress on Evolutionary Computation (2006)

    Google Scholar 

  17. Mezura-Montes, E., Miranda-Varela, M.E., del Carmen Gómez-Ramón, R.: Differential evolution in constrained numerical optimization: an empirical study. Inf. Sci. 180(22), 4223–4262 (2010)

    Article  MathSciNet  Google Scholar 

  18. Huang, V.L., Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In: IEEE Congress on Evolutionary Computation (CEC 2006), pp. 17–24 (2006)

    Google Scholar 

  19. Mezura-Montes, E., Palomeque-Ortiz, A.G.: Parameter control in differential evolution for constrained optimization. In: IEEE Congress on Evolutionary Computation (CEC 2009), pp. 1375–1382 (2009)

    Google Scholar 

  20. Kukkonen, S., Coello-Coello, C.A.: Applying exponential weighting moving average control parameter adaptation technique with generalized differential evolution. In: IEEE Congress on Evolutionary Computation (CEC 2016), pp. 4755–4762 (2016)

    Google Scholar 

  21. Domínguez-Isidro, S., Mezura-Montes, E., Leguizamón, G.: Memetic differential evolution for constrained numerical optimization problems. In: IEEE Congress on Evolutionary Computation (CEC 2013), pp. 2996–3003 (2013)

    Google Scholar 

  22. Elsayed, S., Sarker, R., Coello-Coello, C.A.: Enhanced multi-operator differential evolution for constrained optimization. In: IEEE congress on evolutionary computation (CEC 2016), pp. 4191–4198 (2016)

    Google Scholar 

  23. Mallipeddi, R., Suganthan, P.N.: Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems. In: IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–8 (2010)

    Google Scholar 

  24. Draa, A., Bouzoubia, S., Boukhalfa, I.: A sinusoidal differential evolution algorithm for numerical optimization. Appl. Soft Comput. 27, 99–126 (2015)

    Article  Google Scholar 

  25. Suganthan, P.N., Mallipeddi, R.: Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization. In: Technical report, Nanyang Technological University, Singapore (2010)

    Google Scholar 

  26. Mezura-Montes, E., Cetina-Domínguez, O.: Empirical analysis of a modified artificial bee colony for constrained numerical optimization. Appl. Math. Comput. 10943–10973 (2012)

    Article  MathSciNet  Google Scholar 

  27. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. (1997)

    Google Scholar 

Download references

Acknowledgments

The first author acknowledges support from the Mexican Council for Science and Technology (CONACyT) through a scholarship to pursue graduate studies at the University of Veracruz. The third author acknowledges support from CONACyT through project No. 220522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Ramos-Figueroa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramos-Figueroa, O., Reyes-Sierra, MM., Mezura-Montes, E. (2019). Deterministic Parameter Control in Differential Evolution with Combined Variants for Constrained Search Spaces. In: Trujillo, L., Schütze, O., Maldonado, Y., Valle, P. (eds) Numerical and Evolutionary Optimization – NEO 2017. NEO 2017. Studies in Computational Intelligence, vol 785. Springer, Cham. https://doi.org/10.1007/978-3-319-96104-0_1

Download citation

Publish with us

Policies and ethics