Skip to main content

Bijective Methods

  • Chapter
  • First Online:
Colored Discrete Spaces

Part of the book series: Springer Theses ((Springer Theses))

  • 299 Accesses

Abstract

As mentioned in the introduction, the aim of this chapter is to develop bijections which would enable a systematic characterization of the discrete spaces obtained by gluing bubbles according of their mean curvature. In particular, as detailed in Sect. 2.5, we are interested in identifying and counting the spaces which maximize the number of \((D-2)\)-cells at fixed number of D-cells. This is summarized in the guideline in Sect. 2.5.3. Our criteria for the bijection is therefore that it should keep track of the number of \((D-2)\)-cells, and map configurations to recognizable combinatorial families. We come to the general bijection step-by-step, by first looking at a simple case, then applying Tutte’s bijection, and then generalizing to any kind of colored graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As Eric Fusy suggested, it would actually be more natural to apply the version of Tutte’s bijection between bicolored maps and bipartite maps, instead of taking the dual first and applying the version of the bijection between bipartite maps and bipartite maps.

  2. 2.

    In the usual graph theoretical sense.

  3. 3.

    The permutation of color i is made explicit in \(B\) by keeping only edges of color i.

  4. 4.

    i.e. as a formal power series in the coupling constant \(\lambda \).

References

  1. Bender, Edward A., and E. Rodney Canfield. 1994. The number of degree-restricted rooted maps on the sphere. SIAM Journal on Discrete Mathematics 7 (1): 9–15.

    Article  MathSciNet  Google Scholar 

  2. Chapuy, Guillaume and Wenjie Fang. 2015. Generating functions of bipartite maps on orientable surfaces. ArXiv e-prints, February 2015.

    Google Scholar 

  3. Aldous, David. 1991. The continuum random tree. I. Annals of Probability 19 (1): 1–28.

    Article  MathSciNet  Google Scholar 

  4. Aldous, David. 1991. The continuum random tree. II. An overview. In Stochastic analysis (Durham, 1990), 23–70. Cambridge: Cambridge University Press.

    Google Scholar 

  5. Aldous, David. 1993. The continuum random tree III. Annals of Probability 21 (1): 248–289.

    Article  MathSciNet  Google Scholar 

  6. Tutte, William T. 1963. A census of planar maps. Canadian Journal of Mathematics 15: 249–271.

    Article  MathSciNet  Google Scholar 

  7. Walsh, T.R.S. 1975. Hypermaps versus bipartite maps. Journal of Combinatorial Theory, Series B 18 (2): 155–163.

    Article  MathSciNet  Google Scholar 

  8. Bonzom, Valentin, Luca Lionni, and Vincent Rivasseau. 2017. Colored triangulations of arbitrary dimensions are stuffed Walsh maps. Electronic Journal of Combinatorics, 24(1):#P1.56.

    Google Scholar 

  9. Gurau, Razvan, and Gilles Schaeffer. 2016. Regular colored graphs of positive degree. Annales de l’Institut Henri Poincaré D 3: 257–320.

    Article  MathSciNet  Google Scholar 

  10. Fusy, Eric and Adrian Tanasa. 2015. Asymptotic expansion of the multi-orientable random tensor model. The Electronic Journal of Combinatorics, 22(1): P1.52.

    Google Scholar 

  11. Bonzom, Valentin, Luca Lionni, and Adrian Tanasa. 2017. Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders. Journal of Mathematical Physics 58 (5): 052301.

    Article  ADS  MathSciNet  Google Scholar 

  12. Chapuy, Guillaume. 2011. A new combinatorial identity for unicellular maps, via a direct bijective approach. Advances in Applied Mathematics 47 (4): 874–893.

    Article  MathSciNet  Google Scholar 

  13. Bernardi, Olivier. 2012. An analogue of the Harer-Zagier formula for unicellular maps on general surfaces. Advances in Applied Mathematics 48 (1): 164–180.

    Article  MathSciNet  Google Scholar 

  14. Chapuy, Guillaume, Valentin Féray, and Éric Fusy. 2013. A simple model of trees for unicellular maps. Journal of Combinatorial Theory, Series A 120 (8): 2064–2092.

    Article  MathSciNet  Google Scholar 

  15. Di Francesco, Philippe. 2003. Rectangular matrix models and combinatorics of colored graphs. Nuclear Physics B 648 (3): 461–496.

    Article  ADS  MathSciNet  Google Scholar 

  16. Gurau, Razvan. 2014. The \(1/ N\) expansion of tensor models beyond perturbation theory. Communications in Mathematical Physics 330: 973–1019.

    Article  ADS  MathSciNet  Google Scholar 

  17. Gurau, Razvan, and Vincent Rivasseau. 2015. The multiscale loop vertex expansion. Annales Henri Poincaré 16 (8): 1869–1897.

    Article  ADS  MathSciNet  Google Scholar 

  18. Gurau, Razvan, and Thomas Krajewski. 2015. Analyticity results for the cumulants in a random matrix model. Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions 2 (2): 169–228.

    Google Scholar 

  19. Thibault Delepouve, Razvan Gurau, and Vincent Rivasseau. Universality and Borel summability of arbitrary quartic tensor models. Annales de l’Institut Henri Poincaré Probability and Statistics 52 (2): 821–848, 2016.

    Google Scholar 

  20. Lionni, Luca, and Vincent Rivasseau. 2016. Intermediate field representation for positive matrix and tensor interactions. ArXiv e-prints, September 2016.

    Google Scholar 

  21. Nguyen, Viet Anh, Stéphane Dartois, and Bertrand Eynard. 2015. An analysis of the intermediate field theory of \(T^4\) tensor model. Journal of High Energy Physics 2015 (1): 13.

    Google Scholar 

  22. Bonzom, Valentin, and Stéphane Dartois. Blobbed topological recursion for the quartic melonic tensor model. ArXiv e-prints, December 2016.

    Google Scholar 

  23. Delepouve, Thibault, and Razvan Gurau. 2015. Phase transition in tensor models. Journal of High Energy Physics 06: 178.

    Article  ADS  MathSciNet  Google Scholar 

  24. Benedetti, Dario, and Razvan Gurau. 2015. Symmetry breaking in tensor models. Physical Review D 92 (10): 104041.

    Article  ADS  MathSciNet  Google Scholar 

  25. Hubbard, John. 1959. Calculation of partition functions. Physical Review Letters 77 (3).

    Google Scholar 

  26. Stratonovich, John. 1957. On a method of calculating quantum distribution functions. Soviet Physics Doklady 2: 416.

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Lionni .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lionni, L. (2018). Bijective Methods. In: Colored Discrete Spaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96023-4_3

Download citation

Publish with us

Policies and ethics