Toward Computing with Spider Webs: Computational Setup Realization

  • S. M. Hadi SadatiEmail author
  • Thomas Williams
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)


Spiders are able to extract crucial information, such as the location prey, predators, mates, and even broken threads from propagating web vibrations. The complex structure of the web suggests that the morphology itself might provide computational support in form of a mechanical signal processing system - often referred to as morphological computation. We present preliminary results on identifying these computational aspects in naturally spun webs. A recently presented definition for physical computational systems, consisting of three main elements: (i) a mathematical part, (ii) a computational setup with a theoretical and real part, and (iii) an interpretation, is employed for the first time, to characterize these morphological computation properties. Signal transmission properties of a real spider orb web, as the real part of a morphological computation setup, is investigated in response to step transverse inputs. The parameters of a lumped system model, as the theoretical part of a morphological computation setup, are identified empirically and with the help of an earlier FEM model for the same web. As the possible elements of a computational framework, the web transverse signal filtering, attenuation, delay, memory effect, and deformation modes are briefly discussed based on experimental data and numerical simulations.


Morphological computation Spider web Vibration Lumped system model Signal processing 



This work is supported by the Leverhulme Trust Research Project, “Computing with spiders’ web”, number RPG-2016-345, granted to H.H. and F.V.; and the Royal Academy of Engineering (research fellowship RF1516/15/11), granted to L.R. With special thanks to Dr. Helmut Hauser, Dr. Ludovic Renson, Dr. Beth Mortimer, Prof. Fritz Vollrth, Dr. S. Elnaz Naghibi and Alan Quille who contribute to this research by helpful discussions, exchanging ideas, proofreading the draft and providing helpful comments.


  1. 1.
    Vollrath, F., Selden, P.: The role of behavior in the evolution of spiders, silks, and webs. Ann. Rev.Ecol.Evol. Syst. 38(1), 819–846 (2007)CrossRefGoogle Scholar
  2. 2.
    Vollrath, F.: Coevolution of behaviour and material in the spiders web. In: Biomechanics in Animal Behaviour, pp. 315–29 (2000)Google Scholar
  3. 3.
    Slotta, U., Hess, S., Spie, K., Stromer, T., Serpell, L., Scheibel, T.: Spider silk and amyloid fibrils: a structural comparison. Macromol. Biosci. 7(2), 183–188 (2007)CrossRefGoogle Scholar
  4. 4.
    Guan, J., Vollrath, F., Porter, D.: Two mechanisms for supercontraction in nephila spider dragline silk. Biomacromolecules 12, 4030–4035 (2011)CrossRefGoogle Scholar
  5. 5.
    Masters, W.M., Markl, H.: Vibration signal transmission in spider orb webs. Science 213, 363–365 (1981)CrossRefGoogle Scholar
  6. 6.
    Barth, F.G., Geethabali: Spider vibration receptors: Threshold curves of individual slits in the metatarsal lyriform organ. J. Comp. Physiol. 148, 175–185 (1982)CrossRefGoogle Scholar
  7. 7.
    Mortimer, B., Soler, A., Siviour, C.R., Zaera, R., Vollrath, F.: Tuning the instrument: sonic properties in the spider’s web. J. R. Soc. Interface 13, 20160341 (2016)CrossRefGoogle Scholar
  8. 8.
    Mortimer, B., Soler, A., Siviour, C.R., Vollrath, F.: Remote monitoring of vibrational information in spider webs. Sci. Nature 105, 37 (2018)CrossRefGoogle Scholar
  9. 9.
    Aoyanagi, Y., Okumura, K.: Simple model for the mechanics of spider webs. Phys. Rev. Lett. 104, 038102 (2010)CrossRefGoogle Scholar
  10. 10.
    Soler, A., Zaera, R.: The secondary frame in spider orb webs: the detail that makes the difference. Sci. Rep. 6, 31265 (2016)CrossRefGoogle Scholar
  11. 11.
    Masters, W.M.: Vibrations in the orbwebs of nuctenea sclopetaria (Araneidae): I. Transmission through the web. Behav. Ecol. Sociobiol. 15(3), 207–215 (1984)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Masters, W.M.: Vibrations in the orbwebs of nuctenea sclopetaria (Araneidae): II. Prey and wind signals and the spider’s response threshold. Behav. Ecol. Sociobiol. 15(3), 217–223 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Krushynska, A.O., Bosia, F., Miniaci, M., Pugno, N.M.: Tunable spider-web inspired hybrid labyrinthine acoustic metamaterials for low-frequency sound control. New J. Phys. 19, 105001 (2017). arXiv:1701.07622CrossRefGoogle Scholar
  14. 14.
    Hauser, H., Füchslin, R.M., Pfeifer, R.: Opinions and Outlooks on Morphological Computation. E-Book (2014)Google Scholar
  15. 15.
    Nakajima, K., Li, T., Hauser, H., Pfeifer, R.: Exploiting short-term memory in soft body dynamics as a computational resource. J. R. Soc. Interface 11, 20140437 (2014)CrossRefGoogle Scholar
  16. 16.
    Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body. Sci. Rep. 5, 10487 (2015)CrossRefGoogle Scholar
  17. 17.
    Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in morphological computation with compliant bodies. Biol. Cybern. 106, 595–613 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge (2006). Google-Books-ID: EHPMv9MfgWwCGoogle Scholar
  20. 20.
    Sornkarn, N., Howard, M., Nanayakkara, T.: Internal impedance control helps information gain in embodied perception. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 6685–6690 (2014)Google Scholar
  21. 21.
    Sadati, S., Sullivan, L., Walker, I., Althoefer, K., Nanayakkara, T.: Three-dimensional-printable thermoactive helical interface with decentralized morphological stiffness control for continuum manipulators. IEEE Robot. Autom. Lett. 3, 2283–2290 (2018)CrossRefGoogle Scholar
  22. 22.
    Zhao, Q., Nakajima, K., Sumioka, H., Hauser, H., Pfeifer, R.: Spine dynamics as a computational resource in spine-driven quadruped locomotion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1445–1451, November 2013Google Scholar
  23. 23.
    Ghazi-Zahedi, K., Haeufle, D.F.B., Montfar, G., Schmitt, S., Ay, N.: Evaluating morphological computation in muscle and DC-motor driven models of hopping movements. Front. Robot. AI 3, 42 (2016)CrossRefGoogle Scholar
  24. 24.
    Ghazi-Zahedi, K., Langer, C., Ay, N.: Morphological computation: synergy of body and brain. Entropy 19, 456 (2017)CrossRefGoogle Scholar
  25. 25.
    Füchslin, R.M., Dzyakanchuk, A., Flumini, D., Hauser, H., Hunt, K.J., Luchsinger, R.H., Reller, B., Scheidegger, S., Walker, R.: Morphological computation and morphological control: steps toward a formal theory and applications. Artif. Life 19, 9–34 (2012)CrossRefGoogle Scholar
  26. 26.
    Giunti, M.: Computation, Dynamics, and Cognition. Oxford University Press, New York (1997)zbMATHGoogle Scholar
  27. 27.
    Giunti, M.: What is a physical realization of a computational system? ISONOMIA, 9(Epistemologica Series, Special Issue: Reasoning, Metaphor and Science), 177–192 (2017)Google Scholar
  28. 28.
    Sadati, S., Naghibi, S., Naraghi, M.: An automatic algorithm to derive linear vector form of lagrangian equation of motion with collision and constraint. Procedia Comput. Sci. 76, 217–222 (2015)CrossRefGoogle Scholar
  29. 29.
    Sadati, S.: AutoTMTDyn Software Package, May 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering MathematicsUniversity of BristolBristolU.K.

Personalised recommendations