Observation of Calcium Wave on Physical Stimulus for Realizing Cell Tactile Sensor

  • Hiroki KawashimaEmail author
  • Umakshi Sajnani
  • Masahiro Shimizu
  • Koh Hosoda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)


The biological cells maintain their life functions by responding to the stimulus from the external environment and even change their structure and function upon long-term mechanical stimulation. Such characteristics of the biological cells can be utilized for realizing cell tactile sensors. This report shows some preliminary observation how the calcium wave propagates when aligned cells are physically stimulated, which can be utilized for picking up tactile information from the living cells. The biological cells are aligned in one direction by utilizing self-organization process during cell growth. The observation shows that the direction of wave tends to be perpendicular to the direction of the aligned cells. This can be utilized for local information processing of the stimuli to the tactile sensor.


Calcium wave Cell tactile sensor Mechanical stimulation 



This work was supported partially by Grant-in-Aid for Scientific Research on 15H02763, and 17K19978 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Misawa, N., Mitsuno, H., Kanzaki, R., Takeuchi, S.: Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proc. Natl. Acad. Sci. 107(35), 15340–15344 (2010)CrossRefGoogle Scholar
  2. 2.
    Taniguchi, A.: Live cell-based sensor cells. Biomaterials 31(23), 5911–5915 (2010)CrossRefGoogle Scholar
  3. 3.
    Minzan, K., Shimizu, M., Miyasaka, K., Ogura, T., Nakai, J., Ohkura, M., Hosoda, K.: Toward living tactile sensors. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS (LNAI), vol. 8064, pp. 409–411. Springer, Heidelberg (2013). Scholar
  4. 4.
    Balaji, R., Bielmeier, C., Harz, H., Bates, J., Stadler, C., Hildebrand, A., Classen, A.K.: Calcium spikes, waves and oscillations in a large, patterned epithelial tissue. Sci. Rep. 7, 42786 (2017)CrossRefGoogle Scholar
  5. 5.
    Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)CrossRefGoogle Scholar
  6. 6.
    Hayakawa, K., Tatsumi, H., Sokabe, M.: Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195(5), 721–727 (2011)CrossRefGoogle Scholar
  7. 7.
    Hayakawa, K., Tatsumi, H., Sokabe, M.: Mechano-sensing by actin filaments and focal adhesion proteins. Commun. Integr. Biol. 5(6), 572–577 (2012)CrossRefGoogle Scholar
  8. 8.
    Akiyama, Y., Hoshino, T., Hashimoto, M., Morishima, K.: Evaluation of mechanical stimulation effect on cellular orientation under confluence based on 2D-FFT and principal component analysis. J. Micro-Nano Mechatron. 7(1–3), 69–77 (2012)CrossRefGoogle Scholar
  9. 9.
    Shimizu, M., Yawata, S., Miyamoto, K., Miyasaka, K., Asano, T., Yoshinobu, T., Yawo, H., Ogura, T., Ishiguro, A.: Toward biorobotic systems with muscle cell actuators. In: The Proceedings of AMAM, pp. 87–88 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hiroki Kawashima
    • 1
    Email author
  • Umakshi Sajnani
    • 2
  • Masahiro Shimizu
    • 1
  • Koh Hosoda
    • 1
  1. 1.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Cluster of Excellence Cognitive Interaction TechnologyBielefeld UniversityBielefeldGermany

Personalised recommendations