A Hexapod Walking Robot Mimicking Navigation Strategies of Desert Ants Cataglyphis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)


In this study, a desert ant-inspired celestial compass and a bio-inspired minimalist optic flow sensor named M\(^2\)APix (which stands for Michaelis Menten Auto-adaptive Pixels), were embedded onboard our 2 kg-hexapod walking robot called AntBot, in order to reproduce the homing behavior observed in desert ants Cataglyphis fortis. The robotic challenge here was to make the robot come back home autonomously after being displaced from its initial location. The navigation toolkit of AntBot comprises the celestial-based heading direction, and both stride- and ventral optic flow-based odometry, as observed in desert ants. Experimental results show that our bio-inspired approach can be useful for autonomous outdoor navigation robotics in case of GPS or magnetometer failure, but also to compensate for a drift of the inertial measurement unit. In addition, our strategy requires few computational resources due to the small number of pixels (only 14 here), and a high robustness and precision (mean error of 4.8 cm for an overall path ranging from 2 m to 5 m). Finally, this work presents highly interesting field results of ant-based theoretical models for homing tasks that have not been tested yet in insectoid robots.


Celestial compass Polarized light Optic flow Outdoor navigation Homing Odometry Path integration Legged robot Biorobotics 



The authors would like to thank Marc Boyron and Julien Diperi for their technical support in the conception of the celestial compass.


This work was supported by the French Direction Générale de l’Armement (DGA), CNRS, Aix-Marseille University, the Provence-Alpes-Côte d’Azur region, and the French National Research Agency for Research (ANR) with the Equipex/Robotex project.


  1. 1.
    Muller, M., Wehner, R.: Path integration in desert ants, cataglyphis fortis. Proc. Nat. Acad. Sci. 85(14), 5287–5290 (1988)CrossRefGoogle Scholar
  2. 2.
    Collett, M., Collett, T.S., Bisch, S., Wehner, R.: Local and global vectors in desert ant navigation. Nature 394(6690), 269 (1998)CrossRefGoogle Scholar
  3. 3.
    Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A. 189(8), 579–588 (2003)CrossRefGoogle Scholar
  4. 4.
    Wehner, R.: The desert ant’s navigational toolkit: procedural rather than positional knowledge. Navigation 55(2), 101–114 (2008)CrossRefGoogle Scholar
  5. 5.
    Labhart, T., Meyer, E.P.: Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 47(6), 368–379 (1999)CrossRefGoogle Scholar
  6. 6.
    Labhart, T.: Polarization-opponent interneurons in the insect visual system. Nature 331(6155), 435 (1988)CrossRefGoogle Scholar
  7. 7.
    Wittlinger, M., Wehner, R., Wolf, H.: The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J. Exp. Biol. 210(2), 198–207 (2007)CrossRefGoogle Scholar
  8. 8.
    Ronacher, B., Gallizzi, K., Wohlgemuth, S., Wehner, R.: Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J. Exp. Biol. 203(7), 1113–1121 (2000)Google Scholar
  9. 9.
    Lambrinos, D., Kobayashi, H., Pfeifer, R., Maris, M., Labhart, T., Wehner, R.: An autonomous agent navigating with a polarized light compass. Adapt. Behav. 6(1), 131–161 (1997)CrossRefGoogle Scholar
  10. 10.
    Moller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies of visual homing in mobile robots. In: Proceedings of the Computer Vision and Mobile Robotics Workshop CVMR, vol. 98 (2001)Google Scholar
  11. 11.
    Chu, J., Zhao, K., Zhang, Q., Wang, T.: Construction and performance test of a novel polarization sensor for navigation. Sens. Actuators A: Phys. 148(1), 75–82 (2008)CrossRefGoogle Scholar
  12. 12.
    Chu, J.K., Wang, Z.W., Guan, L., Liu, Z., Wang, Y.L., Zhang, R.: Integrated polarization dependent photodetector and its application for polarization navigation. IEEE Photonics Technol. Lett. 26(5), 469–472 (2014)CrossRefGoogle Scholar
  13. 13.
    Chu, J., Wang, H., Chen, W., Li, R.: Application of a novel polarization sensor to mobile robot navigation. In: 2009 International Conference on Mechatronics and Automation, ICMA 2009, pp. 3763–3768. IEEE (2009)Google Scholar
  14. 14.
    Stürzl, W., Carey, N.: A fisheye camera system for polarisation detection on UAVs. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012, Part II. LNCS, vol. 7584, pp. 431–440. Springer, Heidelberg (2012). Scholar
  15. 15.
    Stürzl, W.: A lightweight single-camera polarization compass with covariance estimation. In: IEEE International Conference on Computer Vision (2017)Google Scholar
  16. 16.
    Dupeyroux, J., Passault, G., Ruffier, F., Viollet, S., Serres, J.: Hexabot: a small 3D-printed six-legged walking robot designed for desert ant-like navigation tasks. In: 2017 20th IFAC Word Congress, Toulouse, France, pp. 16628–16631 (2017)Google Scholar
  17. 17.
    Dupeyroux, J., Diperi, J., Boyron, M., Viollet, S., Serres, J.: A novel insect-inspired optical compass sensor for a hexapod walking robot. In: IROS 2017-IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada, pp. 3439–3445 (2017)Google Scholar
  18. 18.
    Dupeyroux, J., Diperi, J., Boyron, M., Viollet, S., Serres, J.: A bio-inspired celestial compass applied to an ant-inspired robot for autonomous navigation. In: ECMR-European Conference on Mobile Robotics, Paris, France (2017)Google Scholar
  19. 19.
    Mafrica, S., Godiot, S., Menouni, M., Boyron, M., Expert, F., Juston, R., Marchand, N., Ruffier, F., Viollet, S.: A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light. Opt. Express 23(5), 5614–5635 (2015)CrossRefGoogle Scholar
  20. 20.
    Dupeyroux, J., Boutin, V., Serres, J., Perrinet, L., Viollet, S.: M\(^2\)APix: a bio-inspired auto-adaptive visual sensor for robust ground height estimation. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy (2018, Accepted)Google Scholar
  21. 21.
    Vanhoutte, E., Mafrica, S., Ruffier, F., Bootsma, R.J., Serres, J.: Time-of-travel methods for measuring optical flow on board a micro flying robot. Sensors 17(3), 571 (2017)CrossRefGoogle Scholar
  22. 22.
    Haferlach, T., Wessnitzer, J., Mangan, M., Webb, B.: Evolving a neural model of insect path integration. Adapt. Behav. 15(3), 273–287 (2007)CrossRefGoogle Scholar
  23. 23.
    Stone, T., Webb, B., Adden, A., Weddig, N.B., Honkanen, A., Templin, R., Wcislo, W., Scimeca, L., Warrant, E., Heinze, S.: An anatomically constrained model for path integration in the bee brain. Current Biol. 27(20), 3069–3085 (2017)CrossRefGoogle Scholar
  24. 24.
    Lin, P.C., Komsuoglu, H., Koditschek, D.E.: A leg configuration measurement system for full-body pose estimates in a hexapod robot. IEEE Trans. Robot. 21(3), 411–422 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ., CNRS, ISM UMR 7287MarseilleFrance

Personalised recommendations