Insect-Inspired Elementary Motion Detection Embracing Resistive Memory and Spiking Neural Networks

  • Thomas DalgatyEmail author
  • Elisa Vianello
  • Denys Ly
  • Giacomo Indiveri
  • Barbara De Salvo
  • Etienne Nowak
  • Jerome Casas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)


Computation of the direction of motion and the detection of collisions are important features of autonomous robotic systems for course steering and avoidance manoeuvres. Current approaches typically rely on computing these features in software using algorithms implemented on a microprocessor. However, the power consumption, computational latency and form factor limit their applicability. In this work we take inspiration from motion detection studied in the Drosophila visual system to implement an alternative. The nervous system of the Drosophila contains 150000 neurons [1] and computes information in a parallel fashion. We propose a topology comprising a dynamic vision sensor (DVS) which provides input to spiking neural networks (SNN). The network is realised through interconnecting leaky-integrate and fire (LIF) complementary metal oxide semiconductor (CMOS) neurons with hafnium dioxide (HfO2) based resistive random access memories (RRAM) acting as the synaptic connections between them. A genetic algorithm (GA) is used to optimize the parameters of the network, within an experimentally determined range of RRAM conductance values, and through simulation it is demonstrated that the system can compute the direction of motion of a grating. Finally, we demonstrate that by modulating RRAM conductances and adjusting network component time constants the range of grating velocities to which it is most sensitive can be adapted. It is also shown that this allows for the system to reduce power consumption when sensitive to lower velocity stimulus. This mimics the behavior observed in Drosophila whereby the neuromodulator octopamine adjusts the response of the motion detection system when the insect is resting or flying.


Neuromorphic computing Elementary Motion Detection Resistive memories Spiking Neural Network Biomimicry 



The authors would like to acknowledge the support of J. Casas through the CARNOT chair of excellency in bio-inspired technologies. In addition this work was also partially supported by the h2020 NeuRAM3 project.


  1. 1.
    Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., Wu, C.C., Chen, G.Y., Ching, Y.T., Lee, P.C., Lin, C.Y., Lin, H.H., Wu, C.C., Hsu, H.W., Huang, Y.A., Chen, J.Y., Chiang, H.J., Lu, C.F., Ni, R.F., Yeh, C.Y., Hwang, J.K.: Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Curr. Biol. 21(1), 1–11 (2011)CrossRefGoogle Scholar
  2. 2.
    Takemura, S., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P.K., Katz, W.T., Olbris, D.J., Plaza, S.M., Winston, P., Zhao, T., Horne, J.A., Fetter, R.D., Takemura, S., Blazek, K., Chang, L.A., Ogundeyi, O., Saunders, M.A., Shapiro, V., Sigmund, C., Rubin, G.M., Scheffer, L.K., Meinertzhagen, I.A., Chklovskii, D.B.: A visual motion detection circuit suggested by drosophila connectomics. Nature 500, 175 (2013)CrossRefGoogle Scholar
  3. 3.
    Maisak, M.S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., Schilling, T., Bahl, A., Rubin, G.M., Nern, A., Dickson, B.J., Reiff, D.F., Hopp, E., Borst, A.: A directional tuning map of drosophila elementary motion detectors. Nature 500, 212 (2013)CrossRefGoogle Scholar
  4. 4.
    Haag, J., Arenz, A., Serbe, E., Gabbiani, F., Borst, A.: Complementary mechanisms create direction selectivity in the fly. eLife 5, e17421 (2016)CrossRefGoogle Scholar
  5. 5.
    Behnia, R., Clark, D.A., Carter, A.G., Clandinin, T.R., Desplan, C.: Processing properties of ON and OFF pathways for drosophila motion detection. Nature 512, 427 (2014)CrossRefGoogle Scholar
  6. 6.
    Klapoetke, N.C., Nern, A., Peek, M.Y., Rogers, E.M., Breads, P., Rubin, G.M., Reiser, M.B., Card, G.M.: Ultra-selective looming detection from radial motion opponency. Nature 551, 237 (2017)CrossRefGoogle Scholar
  7. 7.
    Jung, S.N., Borst, A., Haag, J.: Flight activity alters velocity tuning of fly motion-sensitive neurons. J. Neurosci. 31(25), 9231–9237 (2011)CrossRefGoogle Scholar
  8. 8.
    Suver, M., Mamiya, A., Dickinson, M.: Octopamine neurons mediate flight-induced modulation of visual processing in drosophila. Curr. Biol. 22(24), 2294–2302 (2012)CrossRefGoogle Scholar
  9. 9.
    Arenz, A., Drews, M.S., Richter, F.G., Ammer, G., Borst, A.: The temporal tuning of the drosophila motion detectors is determined by the dynamics of their input elements. Curr. Biol. 27(7), 929–944 (2017)CrossRefGoogle Scholar
  10. 10.
    Hassenstein, V., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. B 11, 513 (1956)CrossRefGoogle Scholar
  11. 11.
    Harrison, R.R., Koch, C.: An analog VLSI model of the fly elementary motion detector. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10, pp. 880–886. MIT Press, Cambridge (1998)Google Scholar
  12. 12.
    Liu, S.C.: A neuromorphic a VLSI model of global motion processing in the fly. IEEE Trans. Circ. Syst. II Analog Digital Signal Proces. 47(12), 1458–1467 (2000)CrossRefGoogle Scholar
  13. 13.
    Harrison, R.R.: A biologically inspired analog IC for visual collision detection. IEEE Trans. Circ. Syst. I Regul. Pap. 52(11), 2308–2318 (2005)CrossRefGoogle Scholar
  14. 14.
    Plett, J., Bahl, A., Buss, M., Kühnlenz, K., Borst, A.: Bio-inspired visual ego-rotation sensor for MAVs. Biol. Cybern. 106(1), 51–63 (2012)CrossRefGoogle Scholar
  15. 15.
    Krammer, J.: Compact integrated motion sensor with three-pixel interaction. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 86–101 (1996)Google Scholar
  16. 16.
    Krammer, J., Koch, C.: Pulse-based analog VLSI velocity sensors. IEEE Trans. Cir. Syst. II Analog Digit. Signal Process. 44(2), 86–101 (1997). Scholar
  17. 17.
    Sarpeshkar, R., Kramer, J., Indiveri, G., Koch, C.: Analog VLSI architectures for motion processing: from fundamental limits to system applications. Proc. IEEE 84(7), 969–987 (1996). Scholar
  18. 18.
    Shoemaker, P.A.: Implementation of Visual motion detection in analog neuromorphic circuitry - a case study of the issue of circuit precision. Proc. IEEE 102(10), 1557–1570 (2014)CrossRefGoogle Scholar
  19. 19.
    Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 \(\times \) 128 120 dB 15 \(\upmu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576 (2008)CrossRefGoogle Scholar
  20. 20.
    Serrano-Gotarredona, T., Linares-Barranco, B.: A 128 \(\times \)128 1.5% contrast sensitivity 0.9% FPN 3 \(\upmu \)s latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers. IEEE J. Solid-State Circ. 48(3), 827–838 (2013)CrossRefGoogle Scholar
  21. 21.
    Chan, V., Liu, S.C., van Schaik, A.: AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans. Circ. Syst. I Regul. Pap. 54(1), 48–59 (2007). Scholar
  22. 22.
    Grossi, A., Vianello, E., Zambelli, C., Royer, P., Noel, J.P., Giraud, B., Perniola, L., Olivo, P., Nowak, E.: Experimental investigation of 4kbit RRAM arrays programming conditions suitable for TCAM. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. PP(99), 1–9 (2018)CrossRefGoogle Scholar
  23. 23.
    Grossi, A., Nowak, E., Zambelli, C., Pellissier, C., Bernasconi, S., Cibrario, G., Hajjam, K.E., Crochemore, R., Nodin, J.F., Olivo, P., Perniola, L.: Fundamental variability limits of filament-based RRAM. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 4.7.1–4.7.4, December 2016.
  24. 24.
    Garbin, D., Vianello, E., Bichler, O., Rafhay, Q., Gamrat, C., Ghibaudo, G., DeSalvo, B., Perniola, L.: HfO\(_{2}\)-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans. Electron Devices 62(8), 2494–2501 (2015). Scholar
  25. 25.
    Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris, F.C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons: a review of toolsand strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Simon, D.: Evolutionary Optimization Algorithms. Wiley, Hoboken (2013)Google Scholar
  27. 27.
    Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: IJCAI 1989 Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 1, pp. 762–767. Morgan Kaufmann Publishers Inc., San Francisco (1989)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Dalgaty
    • 1
    Email author
  • Elisa Vianello
    • 1
  • Denys Ly
    • 1
  • Giacomo Indiveri
    • 2
  • Barbara De Salvo
    • 1
  • Etienne Nowak
    • 1
  • Jerome Casas
    • 3
  1. 1.CEA-letiMINATEC CampusGrenobleFrance
  2. 2.University of Zurich and ETH ZurichZurichSwitzerland
  3. 3.Insect Biology Research Institute, UMR CNRS 7261, University of ToursToursFrance

Personalised recommendations