Advertisement

The Impact of Nature Inspired Algorithms on Biomimetic Approach in Architectural and Urban Design

  • Natasha Chayaamor-HeilEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10928)

Abstract

At the time when the value of architecture no longer results from creating shapes in space, but rather fostering relationships within it. A concept of architectural design becomes a strategic process rather than an object. Biological inspiration is dominating the era, and has its impact in diverse domains, including architecture and urbanism. The study of biomimetics bridges the biological functions, processes and organizational principles found in nature with our designs and technologies. Recently there are numerous mathematical algorithms have been developed along with the knowledge transferring process from the life forms to solve the design problems. Output of biomimetics study includes not only physical applications, but also various computation methods that can be applied in different areas. We can learn from biological processes and principles to design and develop a number of different kinds of optimisation algorithms that have been widely used in both theoretical study and practical applications. In this paper, we discuss and present the impact of nature inspired algorithms and digital advanced on biomimetic approach in architectural and urban design. We demonstrate how architects reuse bio-inspired computing to solve complex problem or optimise their designs, and nonetheless, how architects use algorithmic architecture software to directly transpose the complexity of nature’s principles into their design process.

Keywords

Biomimetics Biological process Nature inspired algorithms Architectural and urban design 

Notes

Acknowledgements

This article is part of an extended research of Biomimicry in Architecture: State, methods and tools, which is published in les Cahiers la recherche architecturale, urbaine et paysagère, issue Innover 2018 (https://journals.openedition.org/craup/309). I would like to thank François Guéna, the director of Map-maacc UMR 3495, Paris, France and Pierre Côté, Professor at Laval University, Canada who provided expertise that greatly assisted on this subject.

References

  1. 1.
    Biomimicry Guild: Innovation Inspired by Nature Work Book, Biomimicry Guild (2007)Google Scholar
  2. 2.
    Ricard, P.: Le biomimétisme: s’inspirer de la nature pour innover durablement, Les projet d’avis du Conseil économique, social et environnemental (CESE), Paris, Septembre 2015Google Scholar
  3. 3.
    Toyo, I.: Algorithms are Nothing More than an Opportunity to Create Architecture that Respires, pp. 36–45. The Japan Architect, Japan (2010)Google Scholar
  4. 4.
    Rian, I.M.: Tree - inspired dendriforms and fractal like branching structures in architecture: a brief historical overview. Front. Archit. Res. 3(3), 298–323 (2014)CrossRefGoogle Scholar
  5. 5.
    Kolarevic, B.: Architecture in the Digital Age – Design and Manufacturing. Spon Press/Taylor & Francis Group, London/New York (2003)Google Scholar
  6. 6.
    Bagul, P., Uke, N.: Algorithms in Architectural Design. Int. J. Electron. Commun. Comput. Eng. 6(4), 126–130 (2014)Google Scholar
  7. 7.
    Wahl, D.C.: Bionics vs. biomimicry: from control of nature. WIT Trans. Ecol. Environ. 87, 289–298 (2006). W. Press, Éd.Google Scholar
  8. 8.
    Benyus, J.: Biomimicry: Innovation Inspired by Nature. Harper Collins Publishers, New York (1997)Google Scholar
  9. 9.
    Speck, T.: Process sequences in biomimetic research. Des. Nat. IV 114, 3–11 (2008). Brebbia (ed.) WIT PressGoogle Scholar
  10. 10.
    Zari, M.P.: Biomimetic approaches to architectural design for increased sustainability. In: Sustainable Building Conference, Auckland (2007)Google Scholar
  11. 11.
    Siva Sathya, B.: A survey of bio-inspired optimization algorithms. Int. J. Soft Comput. Eng. 2(2), 137–151 (2012)Google Scholar
  12. 12.
    Sidhu, T., Samarabandu, J., Premaratne, U.: A new biologically inspired optimization algorithm. In: Fourth International Conference on Industrial and Information Systems, ICIIS, Sri Lanka, pp. 28–31, (2009)Google Scholar
  13. 13.
    Huiskes, R.: If bone is the answer, then what is the question. J. Anat. 197, 145–156 (2000)CrossRefGoogle Scholar
  14. 14.
    Pottmann, H., Asperl, A., Hofer, M., Kilian, A.: Architectural Geometry, Bentley Institute Press, Exton (2007)Google Scholar
  15. 15.
    Schling, E., Hitrec, D., Barthel, R.: Designing grid structures using asymptotic curve networks. In: De Rycke, K., Gengnagel, C., Baverel, O., Burry, J., Mueller, C., Nguyen, M.M., Rahm, P., Ramsgaard Thomsen, M. (eds.) Humanizing Digital Reality, pp. 125–140. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-6611-5_12CrossRefGoogle Scholar
  16. 16.
    Water cube. http://www.chrisbosse.de/watercube/. Accessed 29 May 2018
  17. 17.
  18. 18.
    Pawlyn, M.: Biomimicry in Architecture. RIBA Publishing, London (2011)Google Scholar
  19. 19.
    Gruber, P.: The signs of life in architecture. Bioinspir. Biomim. 3, 023001 (2008)CrossRefGoogle Scholar
  20. 20.
    Nachtigall, W.: Bau-Bionik: Natur ← Analogien → Technik. Springer, Berlin (2003).  https://doi.org/10.1007/978-3-662-05991-3CrossRefGoogle Scholar
  21. 21.
    Nachtigall, W.: Bionik als Wissenschaft: Erkennen-Abstrahieren-Umsetzen. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-10320-9CrossRefGoogle Scholar
  22. 22.
    Nakagaki, T., et al.: Intelligence: maze-solving by amoeboid organism. Nature 407, 470 (2000)CrossRefGoogle Scholar
  23. 23.
    Nakagaki, T., et al.: Otaining multiple separate food sources: behavioural intelligence in the Physarum plamodium. R. Soc. 271, 2305–2310 (2004)CrossRefGoogle Scholar
  24. 24.
    Tero, A., et al.: Physarum solver: a biologically inspired method of road-network navigation. Phys. A: Stat. Mech. Appl. 363, 1 (2005)Google Scholar
  25. 25.
    Mahadevan, S.: A biologically inspired network design model. Sci. Rep. 5, 10794 (2015)CrossRefGoogle Scholar
  26. 26.
    Adamatzky, A.: Slime mould processors, logic gates and sensors. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 373(2046) (2005)CrossRefGoogle Scholar
  27. 27.
    Chayaamor-Heil, N., Guéna, F., Hannachi-Belkadi, N.: Biomimicry in Architecture: State, methods and tools, Les Cahiers de la recherché Architecturale Urbaine et Paysagère (2017). http://journals.openedition.org/craup/
  28. 28.
    Agence d’architecture A.Bechu. http://www.anthonybechu.com/fr. Accessed 1 Feb 2018
  29. 29.
    Asknature. https://asknature.org. Accessed 15 Mar 2018
  30. 30.
    AEONIUM. https://aeonium.wixsite.com/project. Accessed 29 May 2018
  31. 31.
    AENIUM project is part of the program Méthodes en Architecture en Fabrication numériques ARC-6046, Automne 2017, University Laval, by Prof. Pierre Côté, Marie-Jeanne Allaire-Côté, Théo Jarrand, Marc-Antoine Juneau and Josianne Ouellet-DaudelinGoogle Scholar
  32. 32.
    Grasshopper: Algorithmic modeling for Rhino. http://www.grasshopper3d.com. Accessed 15 Jan 2018
  33. 33.
    Wikipedia Aeonium. https://fr.wikipedia.org/wiki/Aeonium. Accessed 29 May 2018

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MAP-Maacc, CNRS-MCC, UMR 3495, ENSA PARIS-La-VilletteParisFrance

Personalised recommendations