Skip to main content

Hardened Steels

  • Chapter
  • First Online:
Machining Difficult-to-Cut Materials

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Metals, specifically steels, have transformed from their limited use by early blacksmiths to the current state of industrial mass production. The gradual progression of steelmaking processes has led to advancements in manufacturing processes, the quality and performance of products, as well as improving economies. The current chapter covers the machining of hardened steels, which is also known as hard machining. Hard machining refers to the process whereof a cutting tool removes the material from the surface of a workpiece with hardness value over 45 HRC and it can reach even up to 70 HRC. Hard machining can be achieved by almost all of the conventionally used machining operations such as hard turning, hard milling, hard boring, and hard broaching. The main objective of this chapter is to present important information about hardened steels. It briefly provides general information about hardened steels, their history of evolution, and a description of their unique mechanical and metallurgical characteristics. More importantly, it discusses the problems associated with manufacturing hardened steel parts and possible ways to overcome their machining difficulties. In this chapter, the machining operations that can be utilized for machining hard materials are investigated with a main focus on the application of hard turning and hard milling. The main challenges in the machining of hard materials, particularly hardened steels, applicable tool materials, required machine tool specifications, and attainable surface integrity will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Budinski KG, Budinski MK. Engineering materials: properties and selection. Prentice Hall; 2010.

    Google Scholar 

  2. Kalpakjian S, Schmid S. Manufacturing processes for engineering materials, vol. 12. 5th ed. Agenda; 2014. p. 1.

    Google Scholar 

  3. Suresh R, Basavarajappa S, Gaitonde VN, Samuel G, Davim JP. State-of-the-art research in machinability of hardened steels. Proc Inst Mech Eng Part B J Eng Manuf. 2013;227(2):191–209.

    Article  CAS  Google Scholar 

  4. Mackenzie DS. History of quenching. Int Heat Treat Surf Eng. 2008;2(2):68–73.

    Article  Google Scholar 

  5. Yugandhar T, Krishnan P, Rao CB, Kalidas R. Cryogenic treatment and it’s effect on tool steel. In: 6th International Tooling Conference; 2009.

    Google Scholar 

  6. Fry T, Willis AM, Steel: a design, cultural and ecological history. Bloomsbury Publishing; 2015.

    Google Scholar 

  7. Totten G, Howes M, Inoue T. Handbook of residual stress and deformation in steel. ASM International; 2002.

    Google Scholar 

  8. Davies A. The science and practice of welding, vol. 1 & 2. Cambridge; 1984.

    Google Scholar 

  9. Campbell FC. Elements of metallurgy and engineering alloys. ASM International; 2008.

    Google Scholar 

  10. Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall Mater Trans A. 2001;32(4):861–77.

    Article  Google Scholar 

  11. Roberts GA, Kennedy R, Krauss G. Tool steels. ASM International; 1998.

    Google Scholar 

  12. Srinivasan S, Ranganathan S. India’s legendary Wootz steel: an advanced material of the ancient world. National Institute of advanced studies; 2004.

    Google Scholar 

  13. Srinivasan S, Ranganathan S. Wootz steel: an advanced material of the ancient world. Department of Metallurgy, Indian Institute of Science, Bangalore 1997. http://www.tf.uni-kiel.de/matwis/amat/def_en/articles/wootz_advanced_material/wootz_steel.html

  14. Schweitzer PA. Metallic materials: physical, mechanical, and corrosion properties. vol. 19. CRC Press; 2003.

    Google Scholar 

  15. Wadsworth J. The evolution of ultrahigh carbon steels—from the great pyramids, to Alexander the great, to Y2k. In: Taleff EM, Syn CK, Lesuer DR, editors. Deformation, processing, and properties of structural materials; 2000. p. 3–24.

    Google Scholar 

  16. Sherby O, Oyama T, Kum D, Walser B, Wadsworth J. Ultrahigh carbon steels. JOM. 1985;37(6):50–6.

    Article  CAS  Google Scholar 

  17. Sherby O, Wadsworth J. Ultrahigh carbon steels, damascus steels, and superplasticity. Preprint No. UCRL-JC-127180. Istanbul, Turkey: Lawrence Livermore National Library; 1997.

    Google Scholar 

  18. Anstis R. Man of iron—man of steel: the lives of David and Robert Mushet. Albion House; 1997.

    Google Scholar 

  19. Pye D. Practical nitriding and ferritic nitrocarburizing. ASM International; 2003.

    Google Scholar 

  20. Callister WD, Rethwisch DG. Materials science and engineering, vol. 5. New York: Wiley; 2011.

    Google Scholar 

  21. Mamlouk MS, Zaniewski JP. Materials for civil and construction engineers. Limited: Pearson Education; 2013.

    Google Scholar 

  22. Cardarelli F. Materials handbook: a concise desktop reference. Springer Science & Business Media; 2008.

    Google Scholar 

  23. Nakayama K, Arai M, Kanda T. Machining characteristics of hard materials. CIRP Ann Manuf Technol. 1988;37(1):89–92.

    Article  CAS  Google Scholar 

  24. Kishawy HEA. Chip Formation and Surface Integrity in High Speed Machining of Hardened Steel; 1998.

    Google Scholar 

  25. Berns H, Theisen W. Ferrous materials: steel and cast iron. Springer Science & Business Media; 2008.

    Google Scholar 

  26. Sharma CP. Engineering materials: properties and applications of metals and alloys. PHI Learning Pvt. Ltd.; 2003.

    Google Scholar 

  27. Davis JR. Surface hardening of steels: understanding the basics. ASM International; 2002.

    Google Scholar 

  28. Singh M, Ohji T, Asthana R. Green and sustainable manufacturing of advanced material. Elsevier; 2015.

    Google Scholar 

  29. Davim JP. Machining of hard materials. Berlin: Springer; 2011.

    Google Scholar 

  30. Huddle D. New hard turning tools and techniques offer a cost-effective alternative to grinding. Tool. Prod. Mag. 2001;80:96–103.

    Google Scholar 

  31. Soroka D. Hard turning and the machine tool; 2006.

    Google Scholar 

  32. Chinchanikar S, Choudhury S. Machining of hardened steel—experimental investigations, performance modeling and cooling techniques: a review. Int J Mach Tools Manuf. 2015;89:95–109.

    Article  Google Scholar 

  33. Huang Y, Dawson TG. Tool crater wear depth modeling in CBN HARD TURNING. Wear. 2005;258(9):1455–61.

    Article  CAS  Google Scholar 

  34. König W, Berktold A, Koch K-F. Turning versus grinding—a comparison of surface integrity aspects and attainable accuracies. CIRP Ann Manuf Technol. 1993;42(1):39–43.

    Article  Google Scholar 

  35. Tönshoff H, Arendt C, Amor RB. Cutting of hardened steel. CIRP Ann Manuf Technol. 2000;49(2):547–66.

    Article  Google Scholar 

  36. Gaitonde V, Karnik S, Figueira L, Davim JP. Analysis of machinability during hard turning of cold work tool steel (Type: AISI D2). Mater Manuf Processes. 2009;24(12):1373–82.

    Article  Google Scholar 

  37. Baránek I. Trends in cutting materials and tools for hard machining. In: Applied mechanics and materials. Trans Tech Publications; 2014

    Google Scholar 

  38. Coromant S. Switch to hard-part turning, high-productivity, high-quality finish turning of case-hardened steel surfaces.

    Google Scholar 

  39. König W, Klinger M, Link R. Machining hard materials with geometrically defined cutting edges—field of applications and limitations. CIRP Ann Manuf Technol. 1990;39(1):61–4.

    Article  Google Scholar 

  40. Kishawy H, Elbestawi M. Effects of process parameters on material side flow during hard turning. Int J Mach Tools Manuf. 1999;39(7):1017–30.

    Article  Google Scholar 

  41. Ramesh A, Melkote S, Allard L, Riester L, Watkins T. Analysis of white layers formed in hard turning of AISI 52100 Steel. Mater Sci Eng A. 2005;390(1):88–97.

    Article  CAS  Google Scholar 

  42. Chou YK, Evans CJ. White layers and thermal modeling of hard turned surfaces. Int J Mach Tools Manuf. 1999;39(12):1863–81.

    Article  Google Scholar 

  43. Barbacki A, Kawalec M, Hamrol A. Turning and grinding as a source of microstructural changes in the surface layer of hardened steel. J Mater Process Technol. 2003;133(1):21–5.

    Article  CAS  Google Scholar 

  44. Griffiths B. Mechanisms of white layer generation with reference to machining and deformation processes. J Tribol. 1987;109(3):525–30.

    Article  Google Scholar 

  45. Shaw M, Vyas A. Chip formation in the machining of hardened steel. CIRP Ann Manuf Technol. 1993;42(1):29–33.

    Article  Google Scholar 

  46. Elbestawi MA, Srivastava AK, El-Wardany TI. A model for chip formation during machining of hardened steel. CIRP Ann Manuf Technol. 1996;45(1):71–6.

    Article  Google Scholar 

  47. Matsumoto Y, Barash M, Liu C. Cutting mechanism during machining of hardened steel. Mater Sci Technol. 1987;3(4):299–305.

    Article  Google Scholar 

  48. Chao B, Trigger K. Cutting temperatures and metal-cutting phenomena. Trans ASME. 1951;73(6):771.

    Google Scholar 

  49. Huang Y, Liang SY. Effect of cutting conditions on tool performance in CBN hard turning. J Manuf Process. 2005;7(1):10–6.

    Article  Google Scholar 

  50. de Oliveira AJ, Diniz AE, Ursolino DJ. Hard turning in continuous and interrupted cut with PCBN and Whisker-reinforced cutting tools. J Mater Process Technol. 2009;209(12):5262–70.

    Article  CAS  Google Scholar 

  51. Huang Y, Liang SY. Modeling of CBN tool flank wear progression in finish hard turning. Trans Am Soc Mech Eng J Manuf Sci Eng. 2004;126(1):98–106.

    Google Scholar 

  52. Lahiff C, Gordon S, Phelan P. PCBN tool wear modes and mechanisms in finish hard turning. Robot Comput Integr Manuf. 2007;23(6):638–44.

    Article  Google Scholar 

  53. Diniz AE, de Oliveira AJ. Hard turning of interrupted surfaces using cbn tools. J Mater Process Technol. 2008;195(1):275–81.

    Article  CAS  Google Scholar 

  54. Dawson TG, Machining hardened steel with polycrystalline cubic boron nitride cutting tools. Georgia Institute of Technology; 2002.

    Google Scholar 

  55. Chou YS. Wear mechanisms of cubic boron nitride tools in precision turning of hardened steels; 1994.

    Google Scholar 

  56. Davim JP, Figueira L. Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques. Mater Des. 2007;28(4):1186–91.

    Article  CAS  Google Scholar 

  57. Dawson TG, Kurfess TR. Tool life, wear rates, and surface quality in hard turning. Transactions-north American Manufacturing Research Institution of SME; 2001. p. 175–182.

    Google Scholar 

  58. Thiele JD, Melkote SN, Peascoe RA, Watkins TR. Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel. J Manuf Sci Eng. 2000;122(4):642–9.

    Article  Google Scholar 

  59. Thiele JD, Melkote SN. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. J Mater Process Technol. 1999;94(2):216–26.

    Article  Google Scholar 

  60. Kruth J-P, Klewais P. Optimization and dynamic adaptation of the cutter inclination during five-axis milling of sculptured surfaces. CIRP Ann Manuf Technol. 1994;43(1):443–8.

    Article  Google Scholar 

  61. Schulz H. High-speed milling of dies and moulds—cutting conditions and technology. CIRP Ann Manuf Technol. 1995;44(1):35–8.

    Article  Google Scholar 

  62. Ikeda T. Ultra high speed milling of die steel with ball-nose endmill. In: Proceedings of 2nd ICDMT; 1992. p. 48–56.

    Google Scholar 

  63. Kishawy HA, Becze CE. Morphology of chips formed during high speed milling of die and mold tool steel using ball end mills. Technical Papers-Society of Manufacturing Engineers-All Series; 2002.

    Google Scholar 

  64. Elbestawi M, Chen L, Becze C, El-Wardany T. High-speed milling of dies and molds in their hardened state. CIRP Ann Manuf Technol. 1997;46(1):57–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kishawy, H.A., Hosseini, A. (2019). Hardened Steels. In: Machining Difficult-to-Cut Materials. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-95966-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95966-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95965-8

  • Online ISBN: 978-3-319-95966-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics