Skip to main content

Securing Medical Images for Mobile Health Systems Using a Combined Approach of Encryption and Steganography

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10956)

Abstract

In this paper, we propose a medical image encryption scheme which can be used in mobile health systems. The proposed scheme combines RSA algorithm, logistic chaotic encryption algorithm, and steganography technique to secure medical images. In the proposed scheme, we encrypt a medical image based on chaotic sequence and encrypt the initial value of the chaotic sequence using the RSA encryption algorithm. The encrypted information by RSA is hidden in the Image. Only legitimate users can obtain the parameter information and restore the image. In the receiver side, we apply the inverse methods to get the original image after an encrypted image is arrived. We have implemented a simple application on the Android platform and have evaluated its performance. The experimental results show that the proposed image encryption scheme is practical and feasible for mobile health systems.

Keywords

  • Medical image encryption
  • RSA algorithm
  • Chaos
  • F5 steganography
  • Mobile phones

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   109.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Gu, Y.L., Tang, J.S.: A mobile system for skin cancer detection and monitoring. In: SPIE Mobile Multimedia/Image Processing, Security, and Applications, Baltimore, Maryland, USA, 5–9 May 2014

    Google Scholar 

  2. Hu, P.J., Chau, P.Y.K., Sheng, O.R.L., et al.: Examining the technology acceptance model using physician acceptance of telemedicine technology. J. Manage. Inf. Syst. 16(2), 91–112 (1999)

    CrossRef  Google Scholar 

  3. Conde, J.G., De, S., Hall, R.W., et al.: Telehealth innovations in health education and training. Telemed. e-Health 16(1), 103–106 (2010)

    CrossRef  Google Scholar 

  4. Weinstein, R.S., Lopez, A.M., Joseph, B.A., et al.: Telemedicine, telehealth, and mobile health applications that work: opportunities and barriers. Am. J. Med. 127(3), 183–187 (2014)

    CrossRef  Google Scholar 

  5. Larburu, N., Bults, R.G.A., Van Sinderen, M.J., et al.: An ontology for telemedicine systems resiliency to technological context variations in pervasive healthcare. IEEE J. Transl. Eng. Health Med. 3, 1–10 (2015)

    CrossRef  Google Scholar 

  6. Meingast, M., Roosta, T., Sastry, S.: Security and privacy issues with health care information technology. In: 2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2006, pp. 5453–5458. IEEE (2006)

    Google Scholar 

  7. Kamali, S.H., Shakerian, R., Hedayati, M., et al.: A new modified version of advanced encryption standard based algorithm for image encryption. In: 2010 International Conference on Electronics and Information Engineering (ICEIE), vol. 1, pp. V1-141–V1-145. IEEE (2010)

    Google Scholar 

  8. Yun-Peng, Z., Wei, L., Shui-ping, C., et al.: Digital image encryption algorithm based on chaos and improved DES. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 474–479. IEEE (2009)

    Google Scholar 

  9. Nag, A., Singh, J.P., Khan, S., et al.: Image encryption using affine transform and XOR operation. In: 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), pp. 309–312. IEEE (2011)

    Google Scholar 

  10. Seyedzadeh, S.M., Mirzakuchaki, S.: A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map. Sig. Process. 92(5), 1202–1215 (2012)

    CrossRef  Google Scholar 

  11. Enayatifar, R., Abdullah, A.H., Isnin, I.F.: Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt. Lasers Eng. 56, 83–93 (2014)

    CrossRef  Google Scholar 

  12. Xu, L., Li, Z., Li, J., et al.: A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78, 17–25 (2016)

    CrossRef  Google Scholar 

  13. Belazi, A., El-Latif, A.A.A., Diaconu, A.V., et al.: Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms. Opt. Lasers Eng. 88, 37–50 (2017)

    CrossRef  Google Scholar 

  14. Cheddad, A., Condell, J., Curran, K., et al.: Digital image steganography: survey and analysis of current methods. Sig. Process. 90(3), 727–752 (2010)

    CrossRef  Google Scholar 

  15. Usha, S., Kumar, G.A.S., Boopathybagan, K.: A secure triple level encryption method using cryptography and steganography. In: 2011 International Conference on Computer Science and Network Technology (ICCSNT), vol. 2, pp. 1017–1020. IEEE (2011)

    Google Scholar 

  16. Thangadurai, K., Devi, G.S.: An analysis of LSB based image steganography techniques. In: 2014 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–4. IEEE (2014)

    Google Scholar 

  17. Seethalakshmi, K.S., Usha, B.A., Sangeetha, K.N.: Security enhancement in image steganography using neural networks and visual cryptography. In: International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), pp. 396–403. IEEE (2016)

    Google Scholar 

  18. He, J., Lan, W., Tang, S.: A secure image sharing scheme with high quality stego-images based on steganography. Multimed. Tools Appl. 76(6), 7677–7698 (2017)

    CrossRef  Google Scholar 

  19. Banik, B.G., Bandyopadhyay, S.K.: Secret sharing using 3 level DWT method of image steganography based on Lorenz chaotic encryption and visual cryptography. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN), pp. 1147–1152. IEEE (2015)

    Google Scholar 

  20. Westfeld, A.: F5—a steganographic algorithm. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45496-9_21

    CrossRef  Google Scholar 

  21. Fridrich, J., Goljan, M., Hogea, D.: Steganalysis of JPEG images: breaking the F5 algorithm. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 310–323. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36415-3_20

    CrossRef  Google Scholar 

  22. Gao, T., Chen, Z.: A new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372(4), 394–400 (2008)

    CrossRef  Google Scholar 

  23. Hu, Z., Tang, J.: Cluster driven anisotropic diffusion for speckle reduction in ultrasound images. In: Proceeding of IEEE International Conference on Image Processing, Phoenix, AZ, USA

    Google Scholar 

  24. Hu, Z., Tang, J., Lei, L.: Comparison of several speckle reduction techniques for 3D Ultrasound Images. In: Proceeding of IEEE International Conference on System, Man, Cybernetics, Hungary (2016)

    Google Scholar 

  25. Hu, Z., Tang, J.: 3D cluster-driven trilateral filter for speckle reduction in ultrasound images. In: SPIE Mobile Multimedia/Image Processing, Security, and Applications, Baltimore, Maryland, USA, 20 April 2015

    Google Scholar 

  26. Guo, S., Tang, J.: Content based image retrieval from chest radiography databases. In: Proceedings of the 43rd IEEE Annual Asilomar Conference on Signals, Systems, and Computers, Asilomar, Pacific Grove, California, USA (2009)

    Google Scholar 

  27. Guo S., Tang, J., Cuadra, E., Mason, M., Sun, Q.: Normalized wavelet diffusion for speckle reduction on 3D ultrasound images. In: Zhang, F. (ed.) Proceedings of SPIE, Medical Imaging, Parallel Processing of Images, and Optimization Techniques, MIPPR 2009. vol. 7497, p. 74971R. SPIE, Bellingham (2009)

    Google Scholar 

  28. Liu, X., Tang, J., Zhang, X.: A multiscale image enhancement method for calcification detection in screening mammograms. In: Proceedings of IEEE International Conference on Image Processing, Cairo, Egypt, pp. 677–680, 7–10 November 2009

    Google Scholar 

  29. Liu, X., Tang, J.: A multiscale contrast enhancement algorithm for breast cancer detection using laplacian pyramid. In: Proceedings of IEEE International Conference on Information and Automation (2009)

    Google Scholar 

  30. Tang, J., Liu, X., Xiong, S., Liu, J.: A contrast enhancement algorithm in the DCT domain with reduced artifacts for cancer detection. In: Zhang, F. (ed.) Proceedings of SPIE, Medical Imaging, Parallel Processing of Images, and Optimization Techniques, MIPPR 2009, vol. 7497, p. 749728. SPIE, Bellingham (2009)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 61472293). Research Project of Hubei Provincial Department of Education (Grant No. 2016238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshan Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, T., Zhang, K., Tang, J. (2018). Securing Medical Images for Mobile Health Systems Using a Combined Approach of Encryption and Steganography. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)